Step |
Hyp |
Ref |
Expression |
1 |
|
subgdprd.1 |
|- H = ( G |`s A ) |
2 |
|
reldmdprd |
|- Rel dom DProd |
3 |
2
|
brrelex2i |
|- ( H dom DProd S -> S e. _V ) |
4 |
3
|
a1i |
|- ( A e. ( SubGrp ` G ) -> ( H dom DProd S -> S e. _V ) ) |
5 |
2
|
brrelex2i |
|- ( G dom DProd S -> S e. _V ) |
6 |
5
|
adantr |
|- ( ( G dom DProd S /\ ran S C_ ~P A ) -> S e. _V ) |
7 |
6
|
a1i |
|- ( A e. ( SubGrp ` G ) -> ( ( G dom DProd S /\ ran S C_ ~P A ) -> S e. _V ) ) |
8 |
|
ffvelrn |
|- ( ( S : dom S --> ( SubGrp ` H ) /\ x e. dom S ) -> ( S ` x ) e. ( SubGrp ` H ) ) |
9 |
8
|
ad2ant2lr |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ ( x e. dom S /\ y e. ( dom S \ { x } ) ) ) -> ( S ` x ) e. ( SubGrp ` H ) ) |
10 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
11 |
10
|
subgss |
|- ( ( S ` x ) e. ( SubGrp ` H ) -> ( S ` x ) C_ ( Base ` H ) ) |
12 |
9 11
|
syl |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ ( x e. dom S /\ y e. ( dom S \ { x } ) ) ) -> ( S ` x ) C_ ( Base ` H ) ) |
13 |
1
|
subgbas |
|- ( A e. ( SubGrp ` G ) -> A = ( Base ` H ) ) |
14 |
13
|
ad2antrr |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ ( x e. dom S /\ y e. ( dom S \ { x } ) ) ) -> A = ( Base ` H ) ) |
15 |
12 14
|
sseqtrrd |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ ( x e. dom S /\ y e. ( dom S \ { x } ) ) ) -> ( S ` x ) C_ A ) |
16 |
15
|
biantrud |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ ( x e. dom S /\ y e. ( dom S \ { x } ) ) ) -> ( ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) <-> ( ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( S ` x ) C_ A ) ) ) |
17 |
|
simpll |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ ( x e. dom S /\ y e. ( dom S \ { x } ) ) ) -> A e. ( SubGrp ` G ) ) |
18 |
|
simplr |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ ( x e. dom S /\ y e. ( dom S \ { x } ) ) ) -> S : dom S --> ( SubGrp ` H ) ) |
19 |
|
eldifi |
|- ( y e. ( dom S \ { x } ) -> y e. dom S ) |
20 |
19
|
ad2antll |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ ( x e. dom S /\ y e. ( dom S \ { x } ) ) ) -> y e. dom S ) |
21 |
18 20
|
ffvelrnd |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ ( x e. dom S /\ y e. ( dom S \ { x } ) ) ) -> ( S ` y ) e. ( SubGrp ` H ) ) |
22 |
10
|
subgss |
|- ( ( S ` y ) e. ( SubGrp ` H ) -> ( S ` y ) C_ ( Base ` H ) ) |
23 |
21 22
|
syl |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ ( x e. dom S /\ y e. ( dom S \ { x } ) ) ) -> ( S ` y ) C_ ( Base ` H ) ) |
24 |
23 14
|
sseqtrrd |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ ( x e. dom S /\ y e. ( dom S \ { x } ) ) ) -> ( S ` y ) C_ A ) |
25 |
|
eqid |
|- ( Cntz ` G ) = ( Cntz ` G ) |
26 |
|
eqid |
|- ( Cntz ` H ) = ( Cntz ` H ) |
27 |
1 25 26
|
resscntz |
|- ( ( A e. ( SubGrp ` G ) /\ ( S ` y ) C_ A ) -> ( ( Cntz ` H ) ` ( S ` y ) ) = ( ( ( Cntz ` G ) ` ( S ` y ) ) i^i A ) ) |
28 |
17 24 27
|
syl2anc |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ ( x e. dom S /\ y e. ( dom S \ { x } ) ) ) -> ( ( Cntz ` H ) ` ( S ` y ) ) = ( ( ( Cntz ` G ) ` ( S ` y ) ) i^i A ) ) |
29 |
28
|
sseq2d |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ ( x e. dom S /\ y e. ( dom S \ { x } ) ) ) -> ( ( S ` x ) C_ ( ( Cntz ` H ) ` ( S ` y ) ) <-> ( S ` x ) C_ ( ( ( Cntz ` G ) ` ( S ` y ) ) i^i A ) ) ) |
30 |
|
ssin |
|- ( ( ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( S ` x ) C_ A ) <-> ( S ` x ) C_ ( ( ( Cntz ` G ) ` ( S ` y ) ) i^i A ) ) |
31 |
29 30
|
bitr4di |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ ( x e. dom S /\ y e. ( dom S \ { x } ) ) ) -> ( ( S ` x ) C_ ( ( Cntz ` H ) ` ( S ` y ) ) <-> ( ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( S ` x ) C_ A ) ) ) |
32 |
16 31
|
bitr4d |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ ( x e. dom S /\ y e. ( dom S \ { x } ) ) ) -> ( ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) <-> ( S ` x ) C_ ( ( Cntz ` H ) ` ( S ` y ) ) ) ) |
33 |
32
|
anassrs |
|- ( ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) /\ y e. ( dom S \ { x } ) ) -> ( ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) <-> ( S ` x ) C_ ( ( Cntz ` H ) ` ( S ` y ) ) ) ) |
34 |
33
|
ralbidva |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) <-> A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` H ) ` ( S ` y ) ) ) ) |
35 |
|
subgrcl |
|- ( A e. ( SubGrp ` G ) -> G e. Grp ) |
36 |
35
|
ad2antrr |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> G e. Grp ) |
37 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
38 |
37
|
subgacs |
|- ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) ) |
39 |
|
acsmre |
|- ( ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
40 |
36 38 39
|
3syl |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
41 |
1
|
subggrp |
|- ( A e. ( SubGrp ` G ) -> H e. Grp ) |
42 |
41
|
ad2antrr |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> H e. Grp ) |
43 |
10
|
subgacs |
|- ( H e. Grp -> ( SubGrp ` H ) e. ( ACS ` ( Base ` H ) ) ) |
44 |
|
acsmre |
|- ( ( SubGrp ` H ) e. ( ACS ` ( Base ` H ) ) -> ( SubGrp ` H ) e. ( Moore ` ( Base ` H ) ) ) |
45 |
42 43 44
|
3syl |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( SubGrp ` H ) e. ( Moore ` ( Base ` H ) ) ) |
46 |
|
eqid |
|- ( mrCls ` ( SubGrp ` H ) ) = ( mrCls ` ( SubGrp ` H ) ) |
47 |
|
imassrn |
|- ( S " ( dom S \ { x } ) ) C_ ran S |
48 |
|
frn |
|- ( S : dom S --> ( SubGrp ` H ) -> ran S C_ ( SubGrp ` H ) ) |
49 |
48
|
ad2antlr |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ran S C_ ( SubGrp ` H ) ) |
50 |
47 49
|
sstrid |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( S " ( dom S \ { x } ) ) C_ ( SubGrp ` H ) ) |
51 |
|
mresspw |
|- ( ( SubGrp ` H ) e. ( Moore ` ( Base ` H ) ) -> ( SubGrp ` H ) C_ ~P ( Base ` H ) ) |
52 |
45 51
|
syl |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( SubGrp ` H ) C_ ~P ( Base ` H ) ) |
53 |
50 52
|
sstrd |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( S " ( dom S \ { x } ) ) C_ ~P ( Base ` H ) ) |
54 |
|
sspwuni |
|- ( ( S " ( dom S \ { x } ) ) C_ ~P ( Base ` H ) <-> U. ( S " ( dom S \ { x } ) ) C_ ( Base ` H ) ) |
55 |
53 54
|
sylib |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> U. ( S " ( dom S \ { x } ) ) C_ ( Base ` H ) ) |
56 |
45 46 55
|
mrcssidd |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> U. ( S " ( dom S \ { x } ) ) C_ ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) |
57 |
46
|
mrccl |
|- ( ( ( SubGrp ` H ) e. ( Moore ` ( Base ` H ) ) /\ U. ( S " ( dom S \ { x } ) ) C_ ( Base ` H ) ) -> ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) e. ( SubGrp ` H ) ) |
58 |
45 55 57
|
syl2anc |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) e. ( SubGrp ` H ) ) |
59 |
1
|
subsubg |
|- ( A e. ( SubGrp ` G ) -> ( ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) e. ( SubGrp ` H ) <-> ( ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) e. ( SubGrp ` G ) /\ ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) C_ A ) ) ) |
60 |
59
|
ad2antrr |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) e. ( SubGrp ` H ) <-> ( ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) e. ( SubGrp ` G ) /\ ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) C_ A ) ) ) |
61 |
58 60
|
mpbid |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) e. ( SubGrp ` G ) /\ ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) C_ A ) ) |
62 |
61
|
simpld |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) e. ( SubGrp ` G ) ) |
63 |
|
eqid |
|- ( mrCls ` ( SubGrp ` G ) ) = ( mrCls ` ( SubGrp ` G ) ) |
64 |
63
|
mrcsscl |
|- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ( S " ( dom S \ { x } ) ) C_ ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) /\ ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) e. ( SubGrp ` G ) ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) C_ ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) |
65 |
40 56 62 64
|
syl3anc |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) C_ ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) |
66 |
13
|
ad2antrr |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> A = ( Base ` H ) ) |
67 |
55 66
|
sseqtrrd |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> U. ( S " ( dom S \ { x } ) ) C_ A ) |
68 |
37
|
subgss |
|- ( A e. ( SubGrp ` G ) -> A C_ ( Base ` G ) ) |
69 |
68
|
ad2antrr |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> A C_ ( Base ` G ) ) |
70 |
67 69
|
sstrd |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> U. ( S " ( dom S \ { x } ) ) C_ ( Base ` G ) ) |
71 |
40 63 70
|
mrcssidd |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> U. ( S " ( dom S \ { x } ) ) C_ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) |
72 |
63
|
mrccl |
|- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ( S " ( dom S \ { x } ) ) C_ ( Base ` G ) ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) e. ( SubGrp ` G ) ) |
73 |
40 70 72
|
syl2anc |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) e. ( SubGrp ` G ) ) |
74 |
|
simpll |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> A e. ( SubGrp ` G ) ) |
75 |
63
|
mrcsscl |
|- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ( S " ( dom S \ { x } ) ) C_ A /\ A e. ( SubGrp ` G ) ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) C_ A ) |
76 |
40 67 74 75
|
syl3anc |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) C_ A ) |
77 |
1
|
subsubg |
|- ( A e. ( SubGrp ` G ) -> ( ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) e. ( SubGrp ` H ) <-> ( ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) e. ( SubGrp ` G ) /\ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) C_ A ) ) ) |
78 |
77
|
ad2antrr |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) e. ( SubGrp ` H ) <-> ( ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) e. ( SubGrp ` G ) /\ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) C_ A ) ) ) |
79 |
73 76 78
|
mpbir2and |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) e. ( SubGrp ` H ) ) |
80 |
46
|
mrcsscl |
|- ( ( ( SubGrp ` H ) e. ( Moore ` ( Base ` H ) ) /\ U. ( S " ( dom S \ { x } ) ) C_ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) /\ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) e. ( SubGrp ` H ) ) -> ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) C_ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) |
81 |
45 71 79 80
|
syl3anc |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) C_ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) |
82 |
65 81
|
eqssd |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) = ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) |
83 |
82
|
ineq2d |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) ) |
84 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
85 |
1 84
|
subg0 |
|- ( A e. ( SubGrp ` G ) -> ( 0g ` G ) = ( 0g ` H ) ) |
86 |
85
|
ad2antrr |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( 0g ` G ) = ( 0g ` H ) ) |
87 |
86
|
sneqd |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> { ( 0g ` G ) } = { ( 0g ` H ) } ) |
88 |
83 87
|
eqeq12d |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } <-> ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` H ) } ) ) |
89 |
34 88
|
anbi12d |
|- ( ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) /\ x e. dom S ) -> ( ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) <-> ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` H ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` H ) } ) ) ) |
90 |
89
|
ralbidva |
|- ( ( A e. ( SubGrp ` G ) /\ S : dom S --> ( SubGrp ` H ) ) -> ( A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) <-> A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` H ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` H ) } ) ) ) |
91 |
90
|
pm5.32da |
|- ( A e. ( SubGrp ` G ) -> ( ( S : dom S --> ( SubGrp ` H ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) <-> ( S : dom S --> ( SubGrp ` H ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` H ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` H ) } ) ) ) ) |
92 |
1
|
subsubg |
|- ( A e. ( SubGrp ` G ) -> ( x e. ( SubGrp ` H ) <-> ( x e. ( SubGrp ` G ) /\ x C_ A ) ) ) |
93 |
|
elin |
|- ( x e. ( ( SubGrp ` G ) i^i ~P A ) <-> ( x e. ( SubGrp ` G ) /\ x e. ~P A ) ) |
94 |
|
velpw |
|- ( x e. ~P A <-> x C_ A ) |
95 |
94
|
anbi2i |
|- ( ( x e. ( SubGrp ` G ) /\ x e. ~P A ) <-> ( x e. ( SubGrp ` G ) /\ x C_ A ) ) |
96 |
93 95
|
bitri |
|- ( x e. ( ( SubGrp ` G ) i^i ~P A ) <-> ( x e. ( SubGrp ` G ) /\ x C_ A ) ) |
97 |
92 96
|
bitr4di |
|- ( A e. ( SubGrp ` G ) -> ( x e. ( SubGrp ` H ) <-> x e. ( ( SubGrp ` G ) i^i ~P A ) ) ) |
98 |
97
|
eqrdv |
|- ( A e. ( SubGrp ` G ) -> ( SubGrp ` H ) = ( ( SubGrp ` G ) i^i ~P A ) ) |
99 |
98
|
sseq2d |
|- ( A e. ( SubGrp ` G ) -> ( ran S C_ ( SubGrp ` H ) <-> ran S C_ ( ( SubGrp ` G ) i^i ~P A ) ) ) |
100 |
|
ssin |
|- ( ( ran S C_ ( SubGrp ` G ) /\ ran S C_ ~P A ) <-> ran S C_ ( ( SubGrp ` G ) i^i ~P A ) ) |
101 |
99 100
|
bitr4di |
|- ( A e. ( SubGrp ` G ) -> ( ran S C_ ( SubGrp ` H ) <-> ( ran S C_ ( SubGrp ` G ) /\ ran S C_ ~P A ) ) ) |
102 |
101
|
anbi2d |
|- ( A e. ( SubGrp ` G ) -> ( ( S Fn dom S /\ ran S C_ ( SubGrp ` H ) ) <-> ( S Fn dom S /\ ( ran S C_ ( SubGrp ` G ) /\ ran S C_ ~P A ) ) ) ) |
103 |
|
df-f |
|- ( S : dom S --> ( SubGrp ` H ) <-> ( S Fn dom S /\ ran S C_ ( SubGrp ` H ) ) ) |
104 |
|
df-f |
|- ( S : dom S --> ( SubGrp ` G ) <-> ( S Fn dom S /\ ran S C_ ( SubGrp ` G ) ) ) |
105 |
104
|
anbi1i |
|- ( ( S : dom S --> ( SubGrp ` G ) /\ ran S C_ ~P A ) <-> ( ( S Fn dom S /\ ran S C_ ( SubGrp ` G ) ) /\ ran S C_ ~P A ) ) |
106 |
|
anass |
|- ( ( ( S Fn dom S /\ ran S C_ ( SubGrp ` G ) ) /\ ran S C_ ~P A ) <-> ( S Fn dom S /\ ( ran S C_ ( SubGrp ` G ) /\ ran S C_ ~P A ) ) ) |
107 |
105 106
|
bitri |
|- ( ( S : dom S --> ( SubGrp ` G ) /\ ran S C_ ~P A ) <-> ( S Fn dom S /\ ( ran S C_ ( SubGrp ` G ) /\ ran S C_ ~P A ) ) ) |
108 |
102 103 107
|
3bitr4g |
|- ( A e. ( SubGrp ` G ) -> ( S : dom S --> ( SubGrp ` H ) <-> ( S : dom S --> ( SubGrp ` G ) /\ ran S C_ ~P A ) ) ) |
109 |
108
|
anbi1d |
|- ( A e. ( SubGrp ` G ) -> ( ( S : dom S --> ( SubGrp ` H ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) <-> ( ( S : dom S --> ( SubGrp ` G ) /\ ran S C_ ~P A ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) ) ) |
110 |
91 109
|
bitr3d |
|- ( A e. ( SubGrp ` G ) -> ( ( S : dom S --> ( SubGrp ` H ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` H ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` H ) } ) ) <-> ( ( S : dom S --> ( SubGrp ` G ) /\ ran S C_ ~P A ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) ) ) |
111 |
110
|
adantr |
|- ( ( A e. ( SubGrp ` G ) /\ S e. _V ) -> ( ( S : dom S --> ( SubGrp ` H ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` H ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` H ) } ) ) <-> ( ( S : dom S --> ( SubGrp ` G ) /\ ran S C_ ~P A ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) ) ) |
112 |
|
dmexg |
|- ( S e. _V -> dom S e. _V ) |
113 |
112
|
adantl |
|- ( ( A e. ( SubGrp ` G ) /\ S e. _V ) -> dom S e. _V ) |
114 |
|
eqidd |
|- ( ( A e. ( SubGrp ` G ) /\ S e. _V ) -> dom S = dom S ) |
115 |
41
|
adantr |
|- ( ( A e. ( SubGrp ` G ) /\ S e. _V ) -> H e. Grp ) |
116 |
|
eqid |
|- ( 0g ` H ) = ( 0g ` H ) |
117 |
26 116 46
|
dmdprd |
|- ( ( dom S e. _V /\ dom S = dom S ) -> ( H dom DProd S <-> ( H e. Grp /\ S : dom S --> ( SubGrp ` H ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` H ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` H ) } ) ) ) ) |
118 |
|
3anass |
|- ( ( H e. Grp /\ S : dom S --> ( SubGrp ` H ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` H ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` H ) } ) ) <-> ( H e. Grp /\ ( S : dom S --> ( SubGrp ` H ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` H ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` H ) } ) ) ) ) |
119 |
117 118
|
bitrdi |
|- ( ( dom S e. _V /\ dom S = dom S ) -> ( H dom DProd S <-> ( H e. Grp /\ ( S : dom S --> ( SubGrp ` H ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` H ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` H ) } ) ) ) ) ) |
120 |
119
|
baibd |
|- ( ( ( dom S e. _V /\ dom S = dom S ) /\ H e. Grp ) -> ( H dom DProd S <-> ( S : dom S --> ( SubGrp ` H ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` H ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` H ) } ) ) ) ) |
121 |
113 114 115 120
|
syl21anc |
|- ( ( A e. ( SubGrp ` G ) /\ S e. _V ) -> ( H dom DProd S <-> ( S : dom S --> ( SubGrp ` H ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` H ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` H ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` H ) } ) ) ) ) |
122 |
35
|
adantr |
|- ( ( A e. ( SubGrp ` G ) /\ S e. _V ) -> G e. Grp ) |
123 |
25 84 63
|
dmdprd |
|- ( ( dom S e. _V /\ dom S = dom S ) -> ( G dom DProd S <-> ( G e. Grp /\ S : dom S --> ( SubGrp ` G ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) ) ) |
124 |
|
3anass |
|- ( ( G e. Grp /\ S : dom S --> ( SubGrp ` G ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) <-> ( G e. Grp /\ ( S : dom S --> ( SubGrp ` G ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) ) ) |
125 |
123 124
|
bitrdi |
|- ( ( dom S e. _V /\ dom S = dom S ) -> ( G dom DProd S <-> ( G e. Grp /\ ( S : dom S --> ( SubGrp ` G ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) ) ) ) |
126 |
125
|
baibd |
|- ( ( ( dom S e. _V /\ dom S = dom S ) /\ G e. Grp ) -> ( G dom DProd S <-> ( S : dom S --> ( SubGrp ` G ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) ) ) |
127 |
113 114 122 126
|
syl21anc |
|- ( ( A e. ( SubGrp ` G ) /\ S e. _V ) -> ( G dom DProd S <-> ( S : dom S --> ( SubGrp ` G ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) ) ) |
128 |
127
|
anbi1d |
|- ( ( A e. ( SubGrp ` G ) /\ S e. _V ) -> ( ( G dom DProd S /\ ran S C_ ~P A ) <-> ( ( S : dom S --> ( SubGrp ` G ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) /\ ran S C_ ~P A ) ) ) |
129 |
|
an32 |
|- ( ( ( S : dom S --> ( SubGrp ` G ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) /\ ran S C_ ~P A ) <-> ( ( S : dom S --> ( SubGrp ` G ) /\ ran S C_ ~P A ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) ) |
130 |
128 129
|
bitrdi |
|- ( ( A e. ( SubGrp ` G ) /\ S e. _V ) -> ( ( G dom DProd S /\ ran S C_ ~P A ) <-> ( ( S : dom S --> ( SubGrp ` G ) /\ ran S C_ ~P A ) /\ A. x e. dom S ( A. y e. ( dom S \ { x } ) ( S ` x ) C_ ( ( Cntz ` G ) ` ( S ` y ) ) /\ ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( dom S \ { x } ) ) ) ) = { ( 0g ` G ) } ) ) ) ) |
131 |
111 121 130
|
3bitr4d |
|- ( ( A e. ( SubGrp ` G ) /\ S e. _V ) -> ( H dom DProd S <-> ( G dom DProd S /\ ran S C_ ~P A ) ) ) |
132 |
131
|
ex |
|- ( A e. ( SubGrp ` G ) -> ( S e. _V -> ( H dom DProd S <-> ( G dom DProd S /\ ran S C_ ~P A ) ) ) ) |
133 |
4 7 132
|
pm5.21ndd |
|- ( A e. ( SubGrp ` G ) -> ( H dom DProd S <-> ( G dom DProd S /\ ran S C_ ~P A ) ) ) |