| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0red |
|- ( ( A e. RR /\ B e. RR ) -> 0 e. RR ) |
| 2 |
|
simpr |
|- ( ( A e. RR /\ B e. RR ) -> B e. RR ) |
| 3 |
|
simpl |
|- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
| 4 |
|
leaddsub |
|- ( ( 0 e. RR /\ B e. RR /\ A e. RR ) -> ( ( 0 + B ) <_ A <-> 0 <_ ( A - B ) ) ) |
| 5 |
1 2 3 4
|
syl3anc |
|- ( ( A e. RR /\ B e. RR ) -> ( ( 0 + B ) <_ A <-> 0 <_ ( A - B ) ) ) |
| 6 |
2
|
recnd |
|- ( ( A e. RR /\ B e. RR ) -> B e. CC ) |
| 7 |
6
|
addlidd |
|- ( ( A e. RR /\ B e. RR ) -> ( 0 + B ) = B ) |
| 8 |
7
|
breq1d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( 0 + B ) <_ A <-> B <_ A ) ) |
| 9 |
5 8
|
bitr3d |
|- ( ( A e. RR /\ B e. RR ) -> ( 0 <_ ( A - B ) <-> B <_ A ) ) |