Step |
Hyp |
Ref |
Expression |
1 |
|
0red |
|- ( ( A e. RR /\ B e. RR ) -> 0 e. RR ) |
2 |
|
simpr |
|- ( ( A e. RR /\ B e. RR ) -> B e. RR ) |
3 |
|
simpl |
|- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
4 |
|
leaddsub |
|- ( ( 0 e. RR /\ B e. RR /\ A e. RR ) -> ( ( 0 + B ) <_ A <-> 0 <_ ( A - B ) ) ) |
5 |
1 2 3 4
|
syl3anc |
|- ( ( A e. RR /\ B e. RR ) -> ( ( 0 + B ) <_ A <-> 0 <_ ( A - B ) ) ) |
6 |
2
|
recnd |
|- ( ( A e. RR /\ B e. RR ) -> B e. CC ) |
7 |
6
|
addid2d |
|- ( ( A e. RR /\ B e. RR ) -> ( 0 + B ) = B ) |
8 |
7
|
breq1d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( 0 + B ) <_ A <-> B <_ A ) ) |
9 |
5 8
|
bitr3d |
|- ( ( A e. RR /\ B e. RR ) -> ( 0 <_ ( A - B ) <-> B <_ A ) ) |