Description: Nonnegative subtraction. (Contributed by NM, 27-Jul-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subge02 | |- ( ( A e. RR /\ B e. RR ) -> ( 0 <_ B <-> ( A - B ) <_ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addge01 | |- ( ( A e. RR /\ B e. RR ) -> ( 0 <_ B <-> A <_ ( A + B ) ) ) |
|
| 2 | lesubadd | |- ( ( A e. RR /\ B e. RR /\ A e. RR ) -> ( ( A - B ) <_ A <-> A <_ ( A + B ) ) ) |
|
| 3 | 2 | 3anidm13 | |- ( ( A e. RR /\ B e. RR ) -> ( ( A - B ) <_ A <-> A <_ ( A + B ) ) ) |
| 4 | 1 3 | bitr4d | |- ( ( A e. RR /\ B e. RR ) -> ( 0 <_ B <-> ( A - B ) <_ A ) ) |