Description: Nonnegative subtraction. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | leidd.1 | |- ( ph -> A e. RR ) |
|
| ltnegd.2 | |- ( ph -> B e. RR ) |
||
| Assertion | subge0d | |- ( ph -> ( 0 <_ ( A - B ) <-> B <_ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leidd.1 | |- ( ph -> A e. RR ) |
|
| 2 | ltnegd.2 | |- ( ph -> B e. RR ) |
|
| 3 | subge0 | |- ( ( A e. RR /\ B e. RR ) -> ( 0 <_ ( A - B ) <-> B <_ A ) ) |
|
| 4 | 1 2 3 | syl2anc | |- ( ph -> ( 0 <_ ( A - B ) <-> B <_ A ) ) |