Metamath Proof Explorer


Theorem subge0i

Description: Nonnegative subtraction. (Contributed by NM, 13-Aug-2000)

Ref Expression
Hypotheses lt2.1
|- A e. RR
lt2.2
|- B e. RR
Assertion subge0i
|- ( 0 <_ ( A - B ) <-> B <_ A )

Proof

Step Hyp Ref Expression
1 lt2.1
 |-  A e. RR
2 lt2.2
 |-  B e. RR
3 subge0
 |-  ( ( A e. RR /\ B e. RR ) -> ( 0 <_ ( A - B ) <-> B <_ A ) )
4 1 2 3 mp2an
 |-  ( 0 <_ ( A - B ) <-> B <_ A )