Description: A subgroup is a group. (Contributed by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subggrp.h | |- H = ( G |`s S ) |
|
| Assertion | subggrp | |- ( S e. ( SubGrp ` G ) -> H e. Grp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subggrp.h | |- H = ( G |`s S ) |
|
| 2 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 3 | 2 | issubg | |- ( S e. ( SubGrp ` G ) <-> ( G e. Grp /\ S C_ ( Base ` G ) /\ ( G |`s S ) e. Grp ) ) |
| 4 | 3 | simp3bi | |- ( S e. ( SubGrp ` G ) -> ( G |`s S ) e. Grp ) |
| 5 | 1 4 | eqeltrid | |- ( S e. ( SubGrp ` G ) -> H e. Grp ) |