Description: A subgroup is a group. (Contributed by Mario Carneiro, 2-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | subggrp.h | |- H = ( G |`s S ) |
|
Assertion | subggrp | |- ( S e. ( SubGrp ` G ) -> H e. Grp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subggrp.h | |- H = ( G |`s S ) |
|
2 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
3 | 2 | issubg | |- ( S e. ( SubGrp ` G ) <-> ( G e. Grp /\ S C_ ( Base ` G ) /\ ( G |`s S ) e. Grp ) ) |
4 | 3 | simp3bi | |- ( S e. ( SubGrp ` G ) -> ( G |`s S ) e. Grp ) |
5 | 1 4 | eqeltrid | |- ( S e. ( SubGrp ` G ) -> H e. Grp ) |