Metamath Proof Explorer


Theorem subggrp

Description: A subgroup is a group. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypothesis subggrp.h
|- H = ( G |`s S )
Assertion subggrp
|- ( S e. ( SubGrp ` G ) -> H e. Grp )

Proof

Step Hyp Ref Expression
1 subggrp.h
 |-  H = ( G |`s S )
2 eqid
 |-  ( Base ` G ) = ( Base ` G )
3 2 issubg
 |-  ( S e. ( SubGrp ` G ) <-> ( G e. Grp /\ S C_ ( Base ` G ) /\ ( G |`s S ) e. Grp ) )
4 3 simp3bi
 |-  ( S e. ( SubGrp ` G ) -> ( G |`s S ) e. Grp )
5 1 4 eqeltrid
 |-  ( S e. ( SubGrp ` G ) -> H e. Grp )