Description: A group is a subgroup of itself. (Contributed by Mario Carneiro, 7-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | issubg.b | |- B = ( Base ` G ) | |
| Assertion | subgid | |- ( G e. Grp -> B e. ( SubGrp ` G ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | issubg.b | |- B = ( Base ` G ) | |
| 2 | id | |- ( G e. Grp -> G e. Grp ) | |
| 3 | ssidd | |- ( G e. Grp -> B C_ B ) | |
| 4 | 1 | ressid | |- ( G e. Grp -> ( G |`s B ) = G ) | 
| 5 | 4 2 | eqeltrd | |- ( G e. Grp -> ( G |`s B ) e. Grp ) | 
| 6 | 1 | issubg | |- ( B e. ( SubGrp ` G ) <-> ( G e. Grp /\ B C_ B /\ ( G |`s B ) e. Grp ) ) | 
| 7 | 2 3 5 6 | syl3anbrc | |- ( G e. Grp -> B e. ( SubGrp ` G ) ) |