Step |
Hyp |
Ref |
Expression |
1 |
|
intssuni |
|- ( S =/= (/) -> |^| S C_ U. S ) |
2 |
1
|
adantl |
|- ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> |^| S C_ U. S ) |
3 |
|
ssel2 |
|- ( ( S C_ ( SubGrp ` G ) /\ g e. S ) -> g e. ( SubGrp ` G ) ) |
4 |
3
|
adantlr |
|- ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ g e. S ) -> g e. ( SubGrp ` G ) ) |
5 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
6 |
5
|
subgss |
|- ( g e. ( SubGrp ` G ) -> g C_ ( Base ` G ) ) |
7 |
4 6
|
syl |
|- ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ g e. S ) -> g C_ ( Base ` G ) ) |
8 |
7
|
ralrimiva |
|- ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> A. g e. S g C_ ( Base ` G ) ) |
9 |
|
unissb |
|- ( U. S C_ ( Base ` G ) <-> A. g e. S g C_ ( Base ` G ) ) |
10 |
8 9
|
sylibr |
|- ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> U. S C_ ( Base ` G ) ) |
11 |
2 10
|
sstrd |
|- ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> |^| S C_ ( Base ` G ) ) |
12 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
13 |
12
|
subg0cl |
|- ( g e. ( SubGrp ` G ) -> ( 0g ` G ) e. g ) |
14 |
4 13
|
syl |
|- ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ g e. S ) -> ( 0g ` G ) e. g ) |
15 |
14
|
ralrimiva |
|- ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> A. g e. S ( 0g ` G ) e. g ) |
16 |
|
fvex |
|- ( 0g ` G ) e. _V |
17 |
16
|
elint2 |
|- ( ( 0g ` G ) e. |^| S <-> A. g e. S ( 0g ` G ) e. g ) |
18 |
15 17
|
sylibr |
|- ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> ( 0g ` G ) e. |^| S ) |
19 |
18
|
ne0d |
|- ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> |^| S =/= (/) ) |
20 |
4
|
adantlr |
|- ( ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ g e. S ) -> g e. ( SubGrp ` G ) ) |
21 |
|
simprl |
|- ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> x e. |^| S ) |
22 |
|
elinti |
|- ( x e. |^| S -> ( g e. S -> x e. g ) ) |
23 |
22
|
imp |
|- ( ( x e. |^| S /\ g e. S ) -> x e. g ) |
24 |
21 23
|
sylan |
|- ( ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ g e. S ) -> x e. g ) |
25 |
|
simprr |
|- ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> y e. |^| S ) |
26 |
|
elinti |
|- ( y e. |^| S -> ( g e. S -> y e. g ) ) |
27 |
26
|
imp |
|- ( ( y e. |^| S /\ g e. S ) -> y e. g ) |
28 |
25 27
|
sylan |
|- ( ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ g e. S ) -> y e. g ) |
29 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
30 |
29
|
subgcl |
|- ( ( g e. ( SubGrp ` G ) /\ x e. g /\ y e. g ) -> ( x ( +g ` G ) y ) e. g ) |
31 |
20 24 28 30
|
syl3anc |
|- ( ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ g e. S ) -> ( x ( +g ` G ) y ) e. g ) |
32 |
31
|
ralrimiva |
|- ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> A. g e. S ( x ( +g ` G ) y ) e. g ) |
33 |
|
ovex |
|- ( x ( +g ` G ) y ) e. _V |
34 |
33
|
elint2 |
|- ( ( x ( +g ` G ) y ) e. |^| S <-> A. g e. S ( x ( +g ` G ) y ) e. g ) |
35 |
32 34
|
sylibr |
|- ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> ( x ( +g ` G ) y ) e. |^| S ) |
36 |
35
|
anassrs |
|- ( ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ x e. |^| S ) /\ y e. |^| S ) -> ( x ( +g ` G ) y ) e. |^| S ) |
37 |
36
|
ralrimiva |
|- ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ x e. |^| S ) -> A. y e. |^| S ( x ( +g ` G ) y ) e. |^| S ) |
38 |
4
|
adantlr |
|- ( ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ x e. |^| S ) /\ g e. S ) -> g e. ( SubGrp ` G ) ) |
39 |
23
|
adantll |
|- ( ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ x e. |^| S ) /\ g e. S ) -> x e. g ) |
40 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
41 |
40
|
subginvcl |
|- ( ( g e. ( SubGrp ` G ) /\ x e. g ) -> ( ( invg ` G ) ` x ) e. g ) |
42 |
38 39 41
|
syl2anc |
|- ( ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ x e. |^| S ) /\ g e. S ) -> ( ( invg ` G ) ` x ) e. g ) |
43 |
42
|
ralrimiva |
|- ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ x e. |^| S ) -> A. g e. S ( ( invg ` G ) ` x ) e. g ) |
44 |
|
fvex |
|- ( ( invg ` G ) ` x ) e. _V |
45 |
44
|
elint2 |
|- ( ( ( invg ` G ) ` x ) e. |^| S <-> A. g e. S ( ( invg ` G ) ` x ) e. g ) |
46 |
43 45
|
sylibr |
|- ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ x e. |^| S ) -> ( ( invg ` G ) ` x ) e. |^| S ) |
47 |
37 46
|
jca |
|- ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ x e. |^| S ) -> ( A. y e. |^| S ( x ( +g ` G ) y ) e. |^| S /\ ( ( invg ` G ) ` x ) e. |^| S ) ) |
48 |
47
|
ralrimiva |
|- ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> A. x e. |^| S ( A. y e. |^| S ( x ( +g ` G ) y ) e. |^| S /\ ( ( invg ` G ) ` x ) e. |^| S ) ) |
49 |
|
ssn0 |
|- ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> ( SubGrp ` G ) =/= (/) ) |
50 |
|
n0 |
|- ( ( SubGrp ` G ) =/= (/) <-> E. g g e. ( SubGrp ` G ) ) |
51 |
|
subgrcl |
|- ( g e. ( SubGrp ` G ) -> G e. Grp ) |
52 |
51
|
exlimiv |
|- ( E. g g e. ( SubGrp ` G ) -> G e. Grp ) |
53 |
50 52
|
sylbi |
|- ( ( SubGrp ` G ) =/= (/) -> G e. Grp ) |
54 |
5 29 40
|
issubg2 |
|- ( G e. Grp -> ( |^| S e. ( SubGrp ` G ) <-> ( |^| S C_ ( Base ` G ) /\ |^| S =/= (/) /\ A. x e. |^| S ( A. y e. |^| S ( x ( +g ` G ) y ) e. |^| S /\ ( ( invg ` G ) ` x ) e. |^| S ) ) ) ) |
55 |
49 53 54
|
3syl |
|- ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> ( |^| S e. ( SubGrp ` G ) <-> ( |^| S C_ ( Base ` G ) /\ |^| S =/= (/) /\ A. x e. |^| S ( A. y e. |^| S ( x ( +g ` G ) y ) e. |^| S /\ ( ( invg ` G ) ` x ) e. |^| S ) ) ) ) |
56 |
11 19 48 55
|
mpbir3and |
|- ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> |^| S e. ( SubGrp ` G ) ) |