| Step | Hyp | Ref | Expression | 
						
							| 1 |  | intssuni |  |-  ( S =/= (/) -> |^| S C_ U. S ) | 
						
							| 2 | 1 | adantl |  |-  ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> |^| S C_ U. S ) | 
						
							| 3 |  | ssel2 |  |-  ( ( S C_ ( SubGrp ` G ) /\ g e. S ) -> g e. ( SubGrp ` G ) ) | 
						
							| 4 | 3 | adantlr |  |-  ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ g e. S ) -> g e. ( SubGrp ` G ) ) | 
						
							| 5 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 6 | 5 | subgss |  |-  ( g e. ( SubGrp ` G ) -> g C_ ( Base ` G ) ) | 
						
							| 7 | 4 6 | syl |  |-  ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ g e. S ) -> g C_ ( Base ` G ) ) | 
						
							| 8 | 7 | ralrimiva |  |-  ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> A. g e. S g C_ ( Base ` G ) ) | 
						
							| 9 |  | unissb |  |-  ( U. S C_ ( Base ` G ) <-> A. g e. S g C_ ( Base ` G ) ) | 
						
							| 10 | 8 9 | sylibr |  |-  ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> U. S C_ ( Base ` G ) ) | 
						
							| 11 | 2 10 | sstrd |  |-  ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> |^| S C_ ( Base ` G ) ) | 
						
							| 12 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 13 | 12 | subg0cl |  |-  ( g e. ( SubGrp ` G ) -> ( 0g ` G ) e. g ) | 
						
							| 14 | 4 13 | syl |  |-  ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ g e. S ) -> ( 0g ` G ) e. g ) | 
						
							| 15 | 14 | ralrimiva |  |-  ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> A. g e. S ( 0g ` G ) e. g ) | 
						
							| 16 |  | fvex |  |-  ( 0g ` G ) e. _V | 
						
							| 17 | 16 | elint2 |  |-  ( ( 0g ` G ) e. |^| S <-> A. g e. S ( 0g ` G ) e. g ) | 
						
							| 18 | 15 17 | sylibr |  |-  ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> ( 0g ` G ) e. |^| S ) | 
						
							| 19 | 18 | ne0d |  |-  ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> |^| S =/= (/) ) | 
						
							| 20 | 4 | adantlr |  |-  ( ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ g e. S ) -> g e. ( SubGrp ` G ) ) | 
						
							| 21 |  | simprl |  |-  ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> x e. |^| S ) | 
						
							| 22 |  | elinti |  |-  ( x e. |^| S -> ( g e. S -> x e. g ) ) | 
						
							| 23 | 22 | imp |  |-  ( ( x e. |^| S /\ g e. S ) -> x e. g ) | 
						
							| 24 | 21 23 | sylan |  |-  ( ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ g e. S ) -> x e. g ) | 
						
							| 25 |  | simprr |  |-  ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> y e. |^| S ) | 
						
							| 26 |  | elinti |  |-  ( y e. |^| S -> ( g e. S -> y e. g ) ) | 
						
							| 27 | 26 | imp |  |-  ( ( y e. |^| S /\ g e. S ) -> y e. g ) | 
						
							| 28 | 25 27 | sylan |  |-  ( ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ g e. S ) -> y e. g ) | 
						
							| 29 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 30 | 29 | subgcl |  |-  ( ( g e. ( SubGrp ` G ) /\ x e. g /\ y e. g ) -> ( x ( +g ` G ) y ) e. g ) | 
						
							| 31 | 20 24 28 30 | syl3anc |  |-  ( ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ g e. S ) -> ( x ( +g ` G ) y ) e. g ) | 
						
							| 32 | 31 | ralrimiva |  |-  ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> A. g e. S ( x ( +g ` G ) y ) e. g ) | 
						
							| 33 |  | ovex |  |-  ( x ( +g ` G ) y ) e. _V | 
						
							| 34 | 33 | elint2 |  |-  ( ( x ( +g ` G ) y ) e. |^| S <-> A. g e. S ( x ( +g ` G ) y ) e. g ) | 
						
							| 35 | 32 34 | sylibr |  |-  ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> ( x ( +g ` G ) y ) e. |^| S ) | 
						
							| 36 | 35 | anassrs |  |-  ( ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ x e. |^| S ) /\ y e. |^| S ) -> ( x ( +g ` G ) y ) e. |^| S ) | 
						
							| 37 | 36 | ralrimiva |  |-  ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ x e. |^| S ) -> A. y e. |^| S ( x ( +g ` G ) y ) e. |^| S ) | 
						
							| 38 | 4 | adantlr |  |-  ( ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ x e. |^| S ) /\ g e. S ) -> g e. ( SubGrp ` G ) ) | 
						
							| 39 | 23 | adantll |  |-  ( ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ x e. |^| S ) /\ g e. S ) -> x e. g ) | 
						
							| 40 |  | eqid |  |-  ( invg ` G ) = ( invg ` G ) | 
						
							| 41 | 40 | subginvcl |  |-  ( ( g e. ( SubGrp ` G ) /\ x e. g ) -> ( ( invg ` G ) ` x ) e. g ) | 
						
							| 42 | 38 39 41 | syl2anc |  |-  ( ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ x e. |^| S ) /\ g e. S ) -> ( ( invg ` G ) ` x ) e. g ) | 
						
							| 43 | 42 | ralrimiva |  |-  ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ x e. |^| S ) -> A. g e. S ( ( invg ` G ) ` x ) e. g ) | 
						
							| 44 |  | fvex |  |-  ( ( invg ` G ) ` x ) e. _V | 
						
							| 45 | 44 | elint2 |  |-  ( ( ( invg ` G ) ` x ) e. |^| S <-> A. g e. S ( ( invg ` G ) ` x ) e. g ) | 
						
							| 46 | 43 45 | sylibr |  |-  ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ x e. |^| S ) -> ( ( invg ` G ) ` x ) e. |^| S ) | 
						
							| 47 | 37 46 | jca |  |-  ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ x e. |^| S ) -> ( A. y e. |^| S ( x ( +g ` G ) y ) e. |^| S /\ ( ( invg ` G ) ` x ) e. |^| S ) ) | 
						
							| 48 | 47 | ralrimiva |  |-  ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> A. x e. |^| S ( A. y e. |^| S ( x ( +g ` G ) y ) e. |^| S /\ ( ( invg ` G ) ` x ) e. |^| S ) ) | 
						
							| 49 |  | ssn0 |  |-  ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> ( SubGrp ` G ) =/= (/) ) | 
						
							| 50 |  | n0 |  |-  ( ( SubGrp ` G ) =/= (/) <-> E. g g e. ( SubGrp ` G ) ) | 
						
							| 51 |  | subgrcl |  |-  ( g e. ( SubGrp ` G ) -> G e. Grp ) | 
						
							| 52 | 51 | exlimiv |  |-  ( E. g g e. ( SubGrp ` G ) -> G e. Grp ) | 
						
							| 53 | 50 52 | sylbi |  |-  ( ( SubGrp ` G ) =/= (/) -> G e. Grp ) | 
						
							| 54 | 5 29 40 | issubg2 |  |-  ( G e. Grp -> ( |^| S e. ( SubGrp ` G ) <-> ( |^| S C_ ( Base ` G ) /\ |^| S =/= (/) /\ A. x e. |^| S ( A. y e. |^| S ( x ( +g ` G ) y ) e. |^| S /\ ( ( invg ` G ) ` x ) e. |^| S ) ) ) ) | 
						
							| 55 | 49 53 54 | 3syl |  |-  ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> ( |^| S e. ( SubGrp ` G ) <-> ( |^| S C_ ( Base ` G ) /\ |^| S =/= (/) /\ A. x e. |^| S ( A. y e. |^| S ( x ( +g ` G ) y ) e. |^| S /\ ( ( invg ` G ) ` x ) e. |^| S ) ) ) ) | 
						
							| 56 | 11 19 48 55 | mpbir3and |  |-  ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> |^| S e. ( SubGrp ` G ) ) |