| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subg0.h |
|- H = ( G |`s S ) |
| 2 |
|
subginv.i |
|- I = ( invg ` G ) |
| 3 |
|
subginv.j |
|- J = ( invg ` H ) |
| 4 |
1
|
subggrp |
|- ( S e. ( SubGrp ` G ) -> H e. Grp ) |
| 5 |
1
|
subgbas |
|- ( S e. ( SubGrp ` G ) -> S = ( Base ` H ) ) |
| 6 |
5
|
eleq2d |
|- ( S e. ( SubGrp ` G ) -> ( X e. S <-> X e. ( Base ` H ) ) ) |
| 7 |
6
|
biimpa |
|- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> X e. ( Base ` H ) ) |
| 8 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
| 9 |
|
eqid |
|- ( +g ` H ) = ( +g ` H ) |
| 10 |
|
eqid |
|- ( 0g ` H ) = ( 0g ` H ) |
| 11 |
8 9 10 3
|
grprinv |
|- ( ( H e. Grp /\ X e. ( Base ` H ) ) -> ( X ( +g ` H ) ( J ` X ) ) = ( 0g ` H ) ) |
| 12 |
4 7 11
|
syl2an2r |
|- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> ( X ( +g ` H ) ( J ` X ) ) = ( 0g ` H ) ) |
| 13 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 14 |
1 13
|
ressplusg |
|- ( S e. ( SubGrp ` G ) -> ( +g ` G ) = ( +g ` H ) ) |
| 15 |
14
|
adantr |
|- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> ( +g ` G ) = ( +g ` H ) ) |
| 16 |
15
|
oveqd |
|- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> ( X ( +g ` G ) ( J ` X ) ) = ( X ( +g ` H ) ( J ` X ) ) ) |
| 17 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 18 |
1 17
|
subg0 |
|- ( S e. ( SubGrp ` G ) -> ( 0g ` G ) = ( 0g ` H ) ) |
| 19 |
18
|
adantr |
|- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> ( 0g ` G ) = ( 0g ` H ) ) |
| 20 |
12 16 19
|
3eqtr4d |
|- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> ( X ( +g ` G ) ( J ` X ) ) = ( 0g ` G ) ) |
| 21 |
|
subgrcl |
|- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
| 22 |
21
|
adantr |
|- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> G e. Grp ) |
| 23 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 24 |
23
|
subgss |
|- ( S e. ( SubGrp ` G ) -> S C_ ( Base ` G ) ) |
| 25 |
24
|
sselda |
|- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> X e. ( Base ` G ) ) |
| 26 |
8 3
|
grpinvcl |
|- ( ( H e. Grp /\ X e. ( Base ` H ) ) -> ( J ` X ) e. ( Base ` H ) ) |
| 27 |
26
|
ex |
|- ( H e. Grp -> ( X e. ( Base ` H ) -> ( J ` X ) e. ( Base ` H ) ) ) |
| 28 |
4 27
|
syl |
|- ( S e. ( SubGrp ` G ) -> ( X e. ( Base ` H ) -> ( J ` X ) e. ( Base ` H ) ) ) |
| 29 |
5
|
eleq2d |
|- ( S e. ( SubGrp ` G ) -> ( ( J ` X ) e. S <-> ( J ` X ) e. ( Base ` H ) ) ) |
| 30 |
28 6 29
|
3imtr4d |
|- ( S e. ( SubGrp ` G ) -> ( X e. S -> ( J ` X ) e. S ) ) |
| 31 |
30
|
imp |
|- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> ( J ` X ) e. S ) |
| 32 |
24
|
sselda |
|- ( ( S e. ( SubGrp ` G ) /\ ( J ` X ) e. S ) -> ( J ` X ) e. ( Base ` G ) ) |
| 33 |
31 32
|
syldan |
|- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> ( J ` X ) e. ( Base ` G ) ) |
| 34 |
23 13 17 2
|
grpinvid1 |
|- ( ( G e. Grp /\ X e. ( Base ` G ) /\ ( J ` X ) e. ( Base ` G ) ) -> ( ( I ` X ) = ( J ` X ) <-> ( X ( +g ` G ) ( J ` X ) ) = ( 0g ` G ) ) ) |
| 35 |
22 25 33 34
|
syl3anc |
|- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> ( ( I ` X ) = ( J ` X ) <-> ( X ( +g ` G ) ( J ` X ) ) = ( 0g ` G ) ) ) |
| 36 |
20 35
|
mpbird |
|- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> ( I ` X ) = ( J ` X ) ) |