Step |
Hyp |
Ref |
Expression |
1 |
|
subg0.h |
|- H = ( G |`s S ) |
2 |
|
subginv.i |
|- I = ( invg ` G ) |
3 |
|
subginv.j |
|- J = ( invg ` H ) |
4 |
1
|
subggrp |
|- ( S e. ( SubGrp ` G ) -> H e. Grp ) |
5 |
1
|
subgbas |
|- ( S e. ( SubGrp ` G ) -> S = ( Base ` H ) ) |
6 |
5
|
eleq2d |
|- ( S e. ( SubGrp ` G ) -> ( X e. S <-> X e. ( Base ` H ) ) ) |
7 |
6
|
biimpa |
|- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> X e. ( Base ` H ) ) |
8 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
9 |
|
eqid |
|- ( +g ` H ) = ( +g ` H ) |
10 |
|
eqid |
|- ( 0g ` H ) = ( 0g ` H ) |
11 |
8 9 10 3
|
grprinv |
|- ( ( H e. Grp /\ X e. ( Base ` H ) ) -> ( X ( +g ` H ) ( J ` X ) ) = ( 0g ` H ) ) |
12 |
4 7 11
|
syl2an2r |
|- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> ( X ( +g ` H ) ( J ` X ) ) = ( 0g ` H ) ) |
13 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
14 |
1 13
|
ressplusg |
|- ( S e. ( SubGrp ` G ) -> ( +g ` G ) = ( +g ` H ) ) |
15 |
14
|
adantr |
|- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> ( +g ` G ) = ( +g ` H ) ) |
16 |
15
|
oveqd |
|- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> ( X ( +g ` G ) ( J ` X ) ) = ( X ( +g ` H ) ( J ` X ) ) ) |
17 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
18 |
1 17
|
subg0 |
|- ( S e. ( SubGrp ` G ) -> ( 0g ` G ) = ( 0g ` H ) ) |
19 |
18
|
adantr |
|- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> ( 0g ` G ) = ( 0g ` H ) ) |
20 |
12 16 19
|
3eqtr4d |
|- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> ( X ( +g ` G ) ( J ` X ) ) = ( 0g ` G ) ) |
21 |
|
subgrcl |
|- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
22 |
21
|
adantr |
|- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> G e. Grp ) |
23 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
24 |
23
|
subgss |
|- ( S e. ( SubGrp ` G ) -> S C_ ( Base ` G ) ) |
25 |
24
|
sselda |
|- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> X e. ( Base ` G ) ) |
26 |
8 3
|
grpinvcl |
|- ( ( H e. Grp /\ X e. ( Base ` H ) ) -> ( J ` X ) e. ( Base ` H ) ) |
27 |
26
|
ex |
|- ( H e. Grp -> ( X e. ( Base ` H ) -> ( J ` X ) e. ( Base ` H ) ) ) |
28 |
4 27
|
syl |
|- ( S e. ( SubGrp ` G ) -> ( X e. ( Base ` H ) -> ( J ` X ) e. ( Base ` H ) ) ) |
29 |
5
|
eleq2d |
|- ( S e. ( SubGrp ` G ) -> ( ( J ` X ) e. S <-> ( J ` X ) e. ( Base ` H ) ) ) |
30 |
28 6 29
|
3imtr4d |
|- ( S e. ( SubGrp ` G ) -> ( X e. S -> ( J ` X ) e. S ) ) |
31 |
30
|
imp |
|- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> ( J ` X ) e. S ) |
32 |
24
|
sselda |
|- ( ( S e. ( SubGrp ` G ) /\ ( J ` X ) e. S ) -> ( J ` X ) e. ( Base ` G ) ) |
33 |
31 32
|
syldan |
|- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> ( J ` X ) e. ( Base ` G ) ) |
34 |
23 13 17 2
|
grpinvid1 |
|- ( ( G e. Grp /\ X e. ( Base ` G ) /\ ( J ` X ) e. ( Base ` G ) ) -> ( ( I ` X ) = ( J ` X ) <-> ( X ( +g ` G ) ( J ` X ) ) = ( 0g ` G ) ) ) |
35 |
22 25 33 34
|
syl3anc |
|- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> ( ( I ` X ) = ( J ` X ) <-> ( X ( +g ` G ) ( J ` X ) ) = ( 0g ` G ) ) ) |
36 |
20 35
|
mpbird |
|- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> ( I ` X ) = ( J ` X ) ) |