| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subgmulgcl.t |
|- .x. = ( .g ` G ) |
| 2 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 3 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 4 |
|
subgrcl |
|- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
| 5 |
2
|
subgss |
|- ( S e. ( SubGrp ` G ) -> S C_ ( Base ` G ) ) |
| 6 |
3
|
subgcl |
|- ( ( S e. ( SubGrp ` G ) /\ x e. S /\ y e. S ) -> ( x ( +g ` G ) y ) e. S ) |
| 7 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 8 |
7
|
subg0cl |
|- ( S e. ( SubGrp ` G ) -> ( 0g ` G ) e. S ) |
| 9 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
| 10 |
9
|
subginvcl |
|- ( ( S e. ( SubGrp ` G ) /\ x e. S ) -> ( ( invg ` G ) ` x ) e. S ) |
| 11 |
2 1 3 4 5 6 7 8 9 10
|
mulgsubcl |
|- ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) -> ( N .x. X ) e. S ) |