| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subgngp.h |
|- H = ( G |`s A ) |
| 2 |
1
|
subggrp |
|- ( A e. ( SubGrp ` G ) -> H e. Grp ) |
| 3 |
2
|
adantl |
|- ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) -> H e. Grp ) |
| 4 |
|
ngpms |
|- ( G e. NrmGrp -> G e. MetSp ) |
| 5 |
|
ressms |
|- ( ( G e. MetSp /\ A e. ( SubGrp ` G ) ) -> ( G |`s A ) e. MetSp ) |
| 6 |
4 5
|
sylan |
|- ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) -> ( G |`s A ) e. MetSp ) |
| 7 |
1 6
|
eqeltrid |
|- ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) -> H e. MetSp ) |
| 8 |
|
simplr |
|- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> A e. ( SubGrp ` G ) ) |
| 9 |
|
simprl |
|- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> x e. ( Base ` H ) ) |
| 10 |
1
|
subgbas |
|- ( A e. ( SubGrp ` G ) -> A = ( Base ` H ) ) |
| 11 |
10
|
ad2antlr |
|- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> A = ( Base ` H ) ) |
| 12 |
9 11
|
eleqtrrd |
|- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> x e. A ) |
| 13 |
|
simprr |
|- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> y e. ( Base ` H ) ) |
| 14 |
13 11
|
eleqtrrd |
|- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> y e. A ) |
| 15 |
|
eqid |
|- ( -g ` G ) = ( -g ` G ) |
| 16 |
|
eqid |
|- ( -g ` H ) = ( -g ` H ) |
| 17 |
15 1 16
|
subgsub |
|- ( ( A e. ( SubGrp ` G ) /\ x e. A /\ y e. A ) -> ( x ( -g ` G ) y ) = ( x ( -g ` H ) y ) ) |
| 18 |
8 12 14 17
|
syl3anc |
|- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> ( x ( -g ` G ) y ) = ( x ( -g ` H ) y ) ) |
| 19 |
18
|
fveq2d |
|- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> ( ( norm ` G ) ` ( x ( -g ` G ) y ) ) = ( ( norm ` G ) ` ( x ( -g ` H ) y ) ) ) |
| 20 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
| 21 |
1 20
|
ressds |
|- ( A e. ( SubGrp ` G ) -> ( dist ` G ) = ( dist ` H ) ) |
| 22 |
21
|
ad2antlr |
|- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> ( dist ` G ) = ( dist ` H ) ) |
| 23 |
22
|
oveqd |
|- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> ( x ( dist ` G ) y ) = ( x ( dist ` H ) y ) ) |
| 24 |
|
simpll |
|- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> G e. NrmGrp ) |
| 25 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 26 |
25
|
subgss |
|- ( A e. ( SubGrp ` G ) -> A C_ ( Base ` G ) ) |
| 27 |
26
|
ad2antlr |
|- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> A C_ ( Base ` G ) ) |
| 28 |
27 12
|
sseldd |
|- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> x e. ( Base ` G ) ) |
| 29 |
27 14
|
sseldd |
|- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> y e. ( Base ` G ) ) |
| 30 |
|
eqid |
|- ( norm ` G ) = ( norm ` G ) |
| 31 |
30 25 15 20
|
ngpds |
|- ( ( G e. NrmGrp /\ x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( x ( dist ` G ) y ) = ( ( norm ` G ) ` ( x ( -g ` G ) y ) ) ) |
| 32 |
24 28 29 31
|
syl3anc |
|- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> ( x ( dist ` G ) y ) = ( ( norm ` G ) ` ( x ( -g ` G ) y ) ) ) |
| 33 |
23 32
|
eqtr3d |
|- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> ( x ( dist ` H ) y ) = ( ( norm ` G ) ` ( x ( -g ` G ) y ) ) ) |
| 34 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
| 35 |
34 16
|
grpsubcl |
|- ( ( H e. Grp /\ x e. ( Base ` H ) /\ y e. ( Base ` H ) ) -> ( x ( -g ` H ) y ) e. ( Base ` H ) ) |
| 36 |
35
|
3expb |
|- ( ( H e. Grp /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> ( x ( -g ` H ) y ) e. ( Base ` H ) ) |
| 37 |
3 36
|
sylan |
|- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> ( x ( -g ` H ) y ) e. ( Base ` H ) ) |
| 38 |
37 11
|
eleqtrrd |
|- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> ( x ( -g ` H ) y ) e. A ) |
| 39 |
|
eqid |
|- ( norm ` H ) = ( norm ` H ) |
| 40 |
1 30 39
|
subgnm2 |
|- ( ( A e. ( SubGrp ` G ) /\ ( x ( -g ` H ) y ) e. A ) -> ( ( norm ` H ) ` ( x ( -g ` H ) y ) ) = ( ( norm ` G ) ` ( x ( -g ` H ) y ) ) ) |
| 41 |
8 38 40
|
syl2anc |
|- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> ( ( norm ` H ) ` ( x ( -g ` H ) y ) ) = ( ( norm ` G ) ` ( x ( -g ` H ) y ) ) ) |
| 42 |
19 33 41
|
3eqtr4d |
|- ( ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) /\ ( x e. ( Base ` H ) /\ y e. ( Base ` H ) ) ) -> ( x ( dist ` H ) y ) = ( ( norm ` H ) ` ( x ( -g ` H ) y ) ) ) |
| 43 |
42
|
ralrimivva |
|- ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) -> A. x e. ( Base ` H ) A. y e. ( Base ` H ) ( x ( dist ` H ) y ) = ( ( norm ` H ) ` ( x ( -g ` H ) y ) ) ) |
| 44 |
|
eqid |
|- ( dist ` H ) = ( dist ` H ) |
| 45 |
39 16 44 34
|
isngp3 |
|- ( H e. NrmGrp <-> ( H e. Grp /\ H e. MetSp /\ A. x e. ( Base ` H ) A. y e. ( Base ` H ) ( x ( dist ` H ) y ) = ( ( norm ` H ) ` ( x ( -g ` H ) y ) ) ) ) |
| 46 |
3 7 43 45
|
syl3anbrc |
|- ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) -> H e. NrmGrp ) |