| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subgngp.h |
|- H = ( G |`s A ) |
| 2 |
|
subgnm.n |
|- N = ( norm ` G ) |
| 3 |
|
subgnm.m |
|- M = ( norm ` H ) |
| 4 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 5 |
4
|
subgss |
|- ( A e. ( SubGrp ` G ) -> A C_ ( Base ` G ) ) |
| 6 |
5
|
resmptd |
|- ( A e. ( SubGrp ` G ) -> ( ( x e. ( Base ` G ) |-> ( x ( dist ` G ) ( 0g ` G ) ) ) |` A ) = ( x e. A |-> ( x ( dist ` G ) ( 0g ` G ) ) ) ) |
| 7 |
1
|
subgbas |
|- ( A e. ( SubGrp ` G ) -> A = ( Base ` H ) ) |
| 8 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
| 9 |
1 8
|
ressds |
|- ( A e. ( SubGrp ` G ) -> ( dist ` G ) = ( dist ` H ) ) |
| 10 |
|
eqidd |
|- ( A e. ( SubGrp ` G ) -> x = x ) |
| 11 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 12 |
1 11
|
subg0 |
|- ( A e. ( SubGrp ` G ) -> ( 0g ` G ) = ( 0g ` H ) ) |
| 13 |
9 10 12
|
oveq123d |
|- ( A e. ( SubGrp ` G ) -> ( x ( dist ` G ) ( 0g ` G ) ) = ( x ( dist ` H ) ( 0g ` H ) ) ) |
| 14 |
7 13
|
mpteq12dv |
|- ( A e. ( SubGrp ` G ) -> ( x e. A |-> ( x ( dist ` G ) ( 0g ` G ) ) ) = ( x e. ( Base ` H ) |-> ( x ( dist ` H ) ( 0g ` H ) ) ) ) |
| 15 |
6 14
|
eqtr2d |
|- ( A e. ( SubGrp ` G ) -> ( x e. ( Base ` H ) |-> ( x ( dist ` H ) ( 0g ` H ) ) ) = ( ( x e. ( Base ` G ) |-> ( x ( dist ` G ) ( 0g ` G ) ) ) |` A ) ) |
| 16 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
| 17 |
|
eqid |
|- ( 0g ` H ) = ( 0g ` H ) |
| 18 |
|
eqid |
|- ( dist ` H ) = ( dist ` H ) |
| 19 |
3 16 17 18
|
nmfval |
|- M = ( x e. ( Base ` H ) |-> ( x ( dist ` H ) ( 0g ` H ) ) ) |
| 20 |
2 4 11 8
|
nmfval |
|- N = ( x e. ( Base ` G ) |-> ( x ( dist ` G ) ( 0g ` G ) ) ) |
| 21 |
20
|
reseq1i |
|- ( N |` A ) = ( ( x e. ( Base ` G ) |-> ( x ( dist ` G ) ( 0g ` G ) ) ) |` A ) |
| 22 |
15 19 21
|
3eqtr4g |
|- ( A e. ( SubGrp ` G ) -> M = ( N |` A ) ) |