Metamath Proof Explorer


Theorem subgnm

Description: The norm in a subgroup. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses subgngp.h
|- H = ( G |`s A )
subgnm.n
|- N = ( norm ` G )
subgnm.m
|- M = ( norm ` H )
Assertion subgnm
|- ( A e. ( SubGrp ` G ) -> M = ( N |` A ) )

Proof

Step Hyp Ref Expression
1 subgngp.h
 |-  H = ( G |`s A )
2 subgnm.n
 |-  N = ( norm ` G )
3 subgnm.m
 |-  M = ( norm ` H )
4 eqid
 |-  ( Base ` G ) = ( Base ` G )
5 4 subgss
 |-  ( A e. ( SubGrp ` G ) -> A C_ ( Base ` G ) )
6 5 resmptd
 |-  ( A e. ( SubGrp ` G ) -> ( ( x e. ( Base ` G ) |-> ( x ( dist ` G ) ( 0g ` G ) ) ) |` A ) = ( x e. A |-> ( x ( dist ` G ) ( 0g ` G ) ) ) )
7 1 subgbas
 |-  ( A e. ( SubGrp ` G ) -> A = ( Base ` H ) )
8 eqid
 |-  ( dist ` G ) = ( dist ` G )
9 1 8 ressds
 |-  ( A e. ( SubGrp ` G ) -> ( dist ` G ) = ( dist ` H ) )
10 eqidd
 |-  ( A e. ( SubGrp ` G ) -> x = x )
11 eqid
 |-  ( 0g ` G ) = ( 0g ` G )
12 1 11 subg0
 |-  ( A e. ( SubGrp ` G ) -> ( 0g ` G ) = ( 0g ` H ) )
13 9 10 12 oveq123d
 |-  ( A e. ( SubGrp ` G ) -> ( x ( dist ` G ) ( 0g ` G ) ) = ( x ( dist ` H ) ( 0g ` H ) ) )
14 7 13 mpteq12dv
 |-  ( A e. ( SubGrp ` G ) -> ( x e. A |-> ( x ( dist ` G ) ( 0g ` G ) ) ) = ( x e. ( Base ` H ) |-> ( x ( dist ` H ) ( 0g ` H ) ) ) )
15 6 14 eqtr2d
 |-  ( A e. ( SubGrp ` G ) -> ( x e. ( Base ` H ) |-> ( x ( dist ` H ) ( 0g ` H ) ) ) = ( ( x e. ( Base ` G ) |-> ( x ( dist ` G ) ( 0g ` G ) ) ) |` A ) )
16 eqid
 |-  ( Base ` H ) = ( Base ` H )
17 eqid
 |-  ( 0g ` H ) = ( 0g ` H )
18 eqid
 |-  ( dist ` H ) = ( dist ` H )
19 3 16 17 18 nmfval
 |-  M = ( x e. ( Base ` H ) |-> ( x ( dist ` H ) ( 0g ` H ) ) )
20 2 4 11 8 nmfval
 |-  N = ( x e. ( Base ` G ) |-> ( x ( dist ` G ) ( 0g ` G ) ) )
21 20 reseq1i
 |-  ( N |` A ) = ( ( x e. ( Base ` G ) |-> ( x ( dist ` G ) ( 0g ` G ) ) ) |` A )
22 15 19 21 3eqtr4g
 |-  ( A e. ( SubGrp ` G ) -> M = ( N |` A ) )