Metamath Proof Explorer


Theorem subgnm2

Description: A substructure assigns the same values to the norms of elements of a subgroup. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses subgngp.h
|- H = ( G |`s A )
subgnm.n
|- N = ( norm ` G )
subgnm.m
|- M = ( norm ` H )
Assertion subgnm2
|- ( ( A e. ( SubGrp ` G ) /\ X e. A ) -> ( M ` X ) = ( N ` X ) )

Proof

Step Hyp Ref Expression
1 subgngp.h
 |-  H = ( G |`s A )
2 subgnm.n
 |-  N = ( norm ` G )
3 subgnm.m
 |-  M = ( norm ` H )
4 1 2 3 subgnm
 |-  ( A e. ( SubGrp ` G ) -> M = ( N |` A ) )
5 4 fveq1d
 |-  ( A e. ( SubGrp ` G ) -> ( M ` X ) = ( ( N |` A ) ` X ) )
6 fvres
 |-  ( X e. A -> ( ( N |` A ) ` X ) = ( N ` X ) )
7 5 6 sylan9eq
 |-  ( ( A e. ( SubGrp ` G ) /\ X e. A ) -> ( M ` X ) = ( N ` X ) )