Description: A substructure assigns the same values to the norms of elements of a subgroup. (Contributed by Mario Carneiro, 4-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | subgngp.h | |- H = ( G |`s A ) |
|
subgnm.n | |- N = ( norm ` G ) |
||
subgnm.m | |- M = ( norm ` H ) |
||
Assertion | subgnm2 | |- ( ( A e. ( SubGrp ` G ) /\ X e. A ) -> ( M ` X ) = ( N ` X ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgngp.h | |- H = ( G |`s A ) |
|
2 | subgnm.n | |- N = ( norm ` G ) |
|
3 | subgnm.m | |- M = ( norm ` H ) |
|
4 | 1 2 3 | subgnm | |- ( A e. ( SubGrp ` G ) -> M = ( N |` A ) ) |
5 | 4 | fveq1d | |- ( A e. ( SubGrp ` G ) -> ( M ` X ) = ( ( N |` A ) ` X ) ) |
6 | fvres | |- ( X e. A -> ( ( N |` A ) ` X ) = ( N ` X ) ) |
|
7 | 5 6 | sylan9eq | |- ( ( A e. ( SubGrp ` G ) /\ X e. A ) -> ( M ` X ) = ( N ` X ) ) |