Metamath Proof Explorer


Theorem subgod

Description: The order of an element is the same in a subgroup. (Contributed by Mario Carneiro, 14-Jan-2015) (Proof shortened by Stefan O'Rear, 12-Sep-2015)

Ref Expression
Hypotheses submod.h
|- H = ( G |`s Y )
submod.o
|- O = ( od ` G )
submod.p
|- P = ( od ` H )
Assertion subgod
|- ( ( Y e. ( SubGrp ` G ) /\ A e. Y ) -> ( O ` A ) = ( P ` A ) )

Proof

Step Hyp Ref Expression
1 submod.h
 |-  H = ( G |`s Y )
2 submod.o
 |-  O = ( od ` G )
3 submod.p
 |-  P = ( od ` H )
4 subgsubm
 |-  ( Y e. ( SubGrp ` G ) -> Y e. ( SubMnd ` G ) )
5 1 2 3 submod
 |-  ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> ( O ` A ) = ( P ` A ) )
6 4 5 sylan
 |-  ( ( Y e. ( SubGrp ` G ) /\ A e. Y ) -> ( O ` A ) = ( P ` A ) )