Description: The order of an element is the same in a subgroup. (Contributed by Mario Carneiro, 14-Jan-2015) (Proof shortened by Stefan O'Rear, 12-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | submod.h | |- H = ( G |`s Y ) |
|
submod.o | |- O = ( od ` G ) |
||
submod.p | |- P = ( od ` H ) |
||
Assertion | subgod | |- ( ( Y e. ( SubGrp ` G ) /\ A e. Y ) -> ( O ` A ) = ( P ` A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submod.h | |- H = ( G |`s Y ) |
|
2 | submod.o | |- O = ( od ` G ) |
|
3 | submod.p | |- P = ( od ` H ) |
|
4 | subgsubm | |- ( Y e. ( SubGrp ` G ) -> Y e. ( SubMnd ` G ) ) |
|
5 | 1 2 3 | submod | |- ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> ( O ` A ) = ( P ` A ) ) |
6 | 4 5 | sylan | |- ( ( Y e. ( SubGrp ` G ) /\ A e. Y ) -> ( O ` A ) = ( P ` A ) ) |