| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pgpprm |  |-  ( P pGrp G -> P e. Prime ) | 
						
							| 2 | 1 | adantr |  |-  ( ( P pGrp G /\ S e. ( SubGrp ` G ) ) -> P e. Prime ) | 
						
							| 3 |  | eqid |  |-  ( G |`s S ) = ( G |`s S ) | 
						
							| 4 | 3 | subggrp |  |-  ( S e. ( SubGrp ` G ) -> ( G |`s S ) e. Grp ) | 
						
							| 5 | 4 | adantl |  |-  ( ( P pGrp G /\ S e. ( SubGrp ` G ) ) -> ( G |`s S ) e. Grp ) | 
						
							| 6 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 7 |  | eqid |  |-  ( od ` G ) = ( od ` G ) | 
						
							| 8 | 6 7 | ispgp |  |-  ( P pGrp G <-> ( P e. Prime /\ G e. Grp /\ A. x e. ( Base ` G ) E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) ) ) | 
						
							| 9 | 8 | simp3bi |  |-  ( P pGrp G -> A. x e. ( Base ` G ) E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) ) | 
						
							| 10 | 9 | adantr |  |-  ( ( P pGrp G /\ S e. ( SubGrp ` G ) ) -> A. x e. ( Base ` G ) E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) ) | 
						
							| 11 | 6 | subgss |  |-  ( S e. ( SubGrp ` G ) -> S C_ ( Base ` G ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( P pGrp G /\ S e. ( SubGrp ` G ) ) -> S C_ ( Base ` G ) ) | 
						
							| 13 |  | ssralv |  |-  ( S C_ ( Base ` G ) -> ( A. x e. ( Base ` G ) E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) -> A. x e. S E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( P pGrp G /\ S e. ( SubGrp ` G ) ) -> ( A. x e. ( Base ` G ) E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) -> A. x e. S E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) ) ) | 
						
							| 15 |  | eqid |  |-  ( od ` ( G |`s S ) ) = ( od ` ( G |`s S ) ) | 
						
							| 16 | 3 7 15 | subgod |  |-  ( ( S e. ( SubGrp ` G ) /\ x e. S ) -> ( ( od ` G ) ` x ) = ( ( od ` ( G |`s S ) ) ` x ) ) | 
						
							| 17 | 16 | adantll |  |-  ( ( ( P pGrp G /\ S e. ( SubGrp ` G ) ) /\ x e. S ) -> ( ( od ` G ) ` x ) = ( ( od ` ( G |`s S ) ) ` x ) ) | 
						
							| 18 | 17 | eqeq1d |  |-  ( ( ( P pGrp G /\ S e. ( SubGrp ` G ) ) /\ x e. S ) -> ( ( ( od ` G ) ` x ) = ( P ^ n ) <-> ( ( od ` ( G |`s S ) ) ` x ) = ( P ^ n ) ) ) | 
						
							| 19 | 18 | rexbidv |  |-  ( ( ( P pGrp G /\ S e. ( SubGrp ` G ) ) /\ x e. S ) -> ( E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) <-> E. n e. NN0 ( ( od ` ( G |`s S ) ) ` x ) = ( P ^ n ) ) ) | 
						
							| 20 | 19 | ralbidva |  |-  ( ( P pGrp G /\ S e. ( SubGrp ` G ) ) -> ( A. x e. S E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) <-> A. x e. S E. n e. NN0 ( ( od ` ( G |`s S ) ) ` x ) = ( P ^ n ) ) ) | 
						
							| 21 | 14 20 | sylibd |  |-  ( ( P pGrp G /\ S e. ( SubGrp ` G ) ) -> ( A. x e. ( Base ` G ) E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) -> A. x e. S E. n e. NN0 ( ( od ` ( G |`s S ) ) ` x ) = ( P ^ n ) ) ) | 
						
							| 22 | 10 21 | mpd |  |-  ( ( P pGrp G /\ S e. ( SubGrp ` G ) ) -> A. x e. S E. n e. NN0 ( ( od ` ( G |`s S ) ) ` x ) = ( P ^ n ) ) | 
						
							| 23 | 3 | subgbas |  |-  ( S e. ( SubGrp ` G ) -> S = ( Base ` ( G |`s S ) ) ) | 
						
							| 24 | 23 | adantl |  |-  ( ( P pGrp G /\ S e. ( SubGrp ` G ) ) -> S = ( Base ` ( G |`s S ) ) ) | 
						
							| 25 | 22 24 | raleqtrdv |  |-  ( ( P pGrp G /\ S e. ( SubGrp ` G ) ) -> A. x e. ( Base ` ( G |`s S ) ) E. n e. NN0 ( ( od ` ( G |`s S ) ) ` x ) = ( P ^ n ) ) | 
						
							| 26 |  | eqid |  |-  ( Base ` ( G |`s S ) ) = ( Base ` ( G |`s S ) ) | 
						
							| 27 | 26 15 | ispgp |  |-  ( P pGrp ( G |`s S ) <-> ( P e. Prime /\ ( G |`s S ) e. Grp /\ A. x e. ( Base ` ( G |`s S ) ) E. n e. NN0 ( ( od ` ( G |`s S ) ) ` x ) = ( P ^ n ) ) ) | 
						
							| 28 | 2 5 25 27 | syl3anbrc |  |-  ( ( P pGrp G /\ S e. ( SubGrp ` G ) ) -> P pGrp ( G |`s S ) ) |