Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Vtx ` S ) = ( Vtx ` S ) |
2 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
3 |
|
eqid |
|- ( iEdg ` S ) = ( iEdg ` S ) |
4 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
5 |
|
eqid |
|- ( Edg ` S ) = ( Edg ` S ) |
6 |
1 2 3 4 5
|
subgrprop2 |
|- ( S SubGraph G -> ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) ) |
7 |
|
dmss |
|- ( ( iEdg ` S ) C_ ( iEdg ` G ) -> dom ( iEdg ` S ) C_ dom ( iEdg ` G ) ) |
8 |
7
|
3ad2ant2 |
|- ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) -> dom ( iEdg ` S ) C_ dom ( iEdg ` G ) ) |
9 |
8
|
sseld |
|- ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) -> ( X e. dom ( iEdg ` S ) -> X e. dom ( iEdg ` G ) ) ) |
10 |
6 9
|
syl |
|- ( S SubGraph G -> ( X e. dom ( iEdg ` S ) -> X e. dom ( iEdg ` G ) ) ) |
11 |
10
|
imp |
|- ( ( S SubGraph G /\ X e. dom ( iEdg ` S ) ) -> X e. dom ( iEdg ` G ) ) |