Step |
Hyp |
Ref |
Expression |
1 |
|
subgruhgredgd.v |
|- V = ( Vtx ` S ) |
2 |
|
subgruhgredgd.i |
|- I = ( iEdg ` S ) |
3 |
|
subgruhgredgd.g |
|- ( ph -> G e. UHGraph ) |
4 |
|
subgruhgredgd.s |
|- ( ph -> S SubGraph G ) |
5 |
|
subgruhgredgd.x |
|- ( ph -> X e. dom I ) |
6 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
7 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
8 |
|
eqid |
|- ( Edg ` S ) = ( Edg ` S ) |
9 |
1 6 2 7 8
|
subgrprop2 |
|- ( S SubGraph G -> ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) |
10 |
4 9
|
syl |
|- ( ph -> ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) |
11 |
|
simpr3 |
|- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> ( Edg ` S ) C_ ~P V ) |
12 |
|
subgruhgrfun |
|- ( ( G e. UHGraph /\ S SubGraph G ) -> Fun ( iEdg ` S ) ) |
13 |
3 4 12
|
syl2anc |
|- ( ph -> Fun ( iEdg ` S ) ) |
14 |
2
|
dmeqi |
|- dom I = dom ( iEdg ` S ) |
15 |
5 14
|
eleqtrdi |
|- ( ph -> X e. dom ( iEdg ` S ) ) |
16 |
13 15
|
jca |
|- ( ph -> ( Fun ( iEdg ` S ) /\ X e. dom ( iEdg ` S ) ) ) |
17 |
16
|
adantr |
|- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> ( Fun ( iEdg ` S ) /\ X e. dom ( iEdg ` S ) ) ) |
18 |
2
|
fveq1i |
|- ( I ` X ) = ( ( iEdg ` S ) ` X ) |
19 |
|
fvelrn |
|- ( ( Fun ( iEdg ` S ) /\ X e. dom ( iEdg ` S ) ) -> ( ( iEdg ` S ) ` X ) e. ran ( iEdg ` S ) ) |
20 |
18 19
|
eqeltrid |
|- ( ( Fun ( iEdg ` S ) /\ X e. dom ( iEdg ` S ) ) -> ( I ` X ) e. ran ( iEdg ` S ) ) |
21 |
17 20
|
syl |
|- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> ( I ` X ) e. ran ( iEdg ` S ) ) |
22 |
|
edgval |
|- ( Edg ` S ) = ran ( iEdg ` S ) |
23 |
21 22
|
eleqtrrdi |
|- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> ( I ` X ) e. ( Edg ` S ) ) |
24 |
11 23
|
sseldd |
|- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> ( I ` X ) e. ~P V ) |
25 |
7
|
uhgrfun |
|- ( G e. UHGraph -> Fun ( iEdg ` G ) ) |
26 |
3 25
|
syl |
|- ( ph -> Fun ( iEdg ` G ) ) |
27 |
26
|
adantr |
|- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> Fun ( iEdg ` G ) ) |
28 |
|
simpr2 |
|- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> I C_ ( iEdg ` G ) ) |
29 |
5
|
adantr |
|- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> X e. dom I ) |
30 |
|
funssfv |
|- ( ( Fun ( iEdg ` G ) /\ I C_ ( iEdg ` G ) /\ X e. dom I ) -> ( ( iEdg ` G ) ` X ) = ( I ` X ) ) |
31 |
30
|
eqcomd |
|- ( ( Fun ( iEdg ` G ) /\ I C_ ( iEdg ` G ) /\ X e. dom I ) -> ( I ` X ) = ( ( iEdg ` G ) ` X ) ) |
32 |
27 28 29 31
|
syl3anc |
|- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> ( I ` X ) = ( ( iEdg ` G ) ` X ) ) |
33 |
3
|
adantr |
|- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> G e. UHGraph ) |
34 |
26
|
funfnd |
|- ( ph -> ( iEdg ` G ) Fn dom ( iEdg ` G ) ) |
35 |
34
|
adantr |
|- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> ( iEdg ` G ) Fn dom ( iEdg ` G ) ) |
36 |
|
subgreldmiedg |
|- ( ( S SubGraph G /\ X e. dom ( iEdg ` S ) ) -> X e. dom ( iEdg ` G ) ) |
37 |
4 15 36
|
syl2anc |
|- ( ph -> X e. dom ( iEdg ` G ) ) |
38 |
37
|
adantr |
|- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> X e. dom ( iEdg ` G ) ) |
39 |
7
|
uhgrn0 |
|- ( ( G e. UHGraph /\ ( iEdg ` G ) Fn dom ( iEdg ` G ) /\ X e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` X ) =/= (/) ) |
40 |
33 35 38 39
|
syl3anc |
|- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> ( ( iEdg ` G ) ` X ) =/= (/) ) |
41 |
32 40
|
eqnetrd |
|- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> ( I ` X ) =/= (/) ) |
42 |
|
eldifsn |
|- ( ( I ` X ) e. ( ~P V \ { (/) } ) <-> ( ( I ` X ) e. ~P V /\ ( I ` X ) =/= (/) ) ) |
43 |
24 41 42
|
sylanbrc |
|- ( ( ph /\ ( V C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P V ) ) -> ( I ` X ) e. ( ~P V \ { (/) } ) ) |
44 |
10 43
|
mpdan |
|- ( ph -> ( I ` X ) e. ( ~P V \ { (/) } ) ) |