| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							subgslw.1 | 
							 |-  H = ( G |`s S )  | 
						
						
							| 2 | 
							
								
							 | 
							slwprm | 
							 |-  ( K e. ( P pSyl G ) -> P e. Prime )  | 
						
						
							| 3 | 
							
								2
							 | 
							3ad2ant2 | 
							 |-  ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) -> P e. Prime )  | 
						
						
							| 4 | 
							
								
							 | 
							slwsubg | 
							 |-  ( K e. ( P pSyl G ) -> K e. ( SubGrp ` G ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							3ad2ant2 | 
							 |-  ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) -> K e. ( SubGrp ` G ) )  | 
						
						
							| 6 | 
							
								
							 | 
							simp3 | 
							 |-  ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) -> K C_ S )  | 
						
						
							| 7 | 
							
								1
							 | 
							subsubg | 
							 |-  ( S e. ( SubGrp ` G ) -> ( K e. ( SubGrp ` H ) <-> ( K e. ( SubGrp ` G ) /\ K C_ S ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							3ad2ant1 | 
							 |-  ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) -> ( K e. ( SubGrp ` H ) <-> ( K e. ( SubGrp ` G ) /\ K C_ S ) ) )  | 
						
						
							| 9 | 
							
								5 6 8
							 | 
							mpbir2and | 
							 |-  ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) -> K e. ( SubGrp ` H ) )  | 
						
						
							| 10 | 
							
								1
							 | 
							oveq1i | 
							 |-  ( H |`s x ) = ( ( G |`s S ) |`s x )  | 
						
						
							| 11 | 
							
								
							 | 
							simpl1 | 
							 |-  ( ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) /\ x e. ( SubGrp ` H ) ) -> S e. ( SubGrp ` G ) )  | 
						
						
							| 12 | 
							
								1
							 | 
							subsubg | 
							 |-  ( S e. ( SubGrp ` G ) -> ( x e. ( SubGrp ` H ) <-> ( x e. ( SubGrp ` G ) /\ x C_ S ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							3ad2ant1 | 
							 |-  ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) -> ( x e. ( SubGrp ` H ) <-> ( x e. ( SubGrp ` G ) /\ x C_ S ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							simplbda | 
							 |-  ( ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) /\ x e. ( SubGrp ` H ) ) -> x C_ S )  | 
						
						
							| 15 | 
							
								
							 | 
							ressabs | 
							 |-  ( ( S e. ( SubGrp ` G ) /\ x C_ S ) -> ( ( G |`s S ) |`s x ) = ( G |`s x ) )  | 
						
						
							| 16 | 
							
								11 14 15
							 | 
							syl2anc | 
							 |-  ( ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) /\ x e. ( SubGrp ` H ) ) -> ( ( G |`s S ) |`s x ) = ( G |`s x ) )  | 
						
						
							| 17 | 
							
								10 16
							 | 
							eqtrid | 
							 |-  ( ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) /\ x e. ( SubGrp ` H ) ) -> ( H |`s x ) = ( G |`s x ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							breq2d | 
							 |-  ( ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) /\ x e. ( SubGrp ` H ) ) -> ( P pGrp ( H |`s x ) <-> P pGrp ( G |`s x ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							anbi2d | 
							 |-  ( ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) /\ x e. ( SubGrp ` H ) ) -> ( ( K C_ x /\ P pGrp ( H |`s x ) ) <-> ( K C_ x /\ P pGrp ( G |`s x ) ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							simpl2 | 
							 |-  ( ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) /\ x e. ( SubGrp ` H ) ) -> K e. ( P pSyl G ) )  | 
						
						
							| 21 | 
							
								13
							 | 
							simprbda | 
							 |-  ( ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) /\ x e. ( SubGrp ` H ) ) -> x e. ( SubGrp ` G ) )  | 
						
						
							| 22 | 
							
								
							 | 
							eqid | 
							 |-  ( G |`s x ) = ( G |`s x )  | 
						
						
							| 23 | 
							
								22
							 | 
							slwispgp | 
							 |-  ( ( K e. ( P pSyl G ) /\ x e. ( SubGrp ` G ) ) -> ( ( K C_ x /\ P pGrp ( G |`s x ) ) <-> K = x ) )  | 
						
						
							| 24 | 
							
								20 21 23
							 | 
							syl2anc | 
							 |-  ( ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) /\ x e. ( SubGrp ` H ) ) -> ( ( K C_ x /\ P pGrp ( G |`s x ) ) <-> K = x ) )  | 
						
						
							| 25 | 
							
								19 24
							 | 
							bitrd | 
							 |-  ( ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) /\ x e. ( SubGrp ` H ) ) -> ( ( K C_ x /\ P pGrp ( H |`s x ) ) <-> K = x ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							ralrimiva | 
							 |-  ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) -> A. x e. ( SubGrp ` H ) ( ( K C_ x /\ P pGrp ( H |`s x ) ) <-> K = x ) )  | 
						
						
							| 27 | 
							
								
							 | 
							isslw | 
							 |-  ( K e. ( P pSyl H ) <-> ( P e. Prime /\ K e. ( SubGrp ` H ) /\ A. x e. ( SubGrp ` H ) ( ( K C_ x /\ P pGrp ( H |`s x ) ) <-> K = x ) ) )  | 
						
						
							| 28 | 
							
								3 9 26 27
							 | 
							syl3anbrc | 
							 |-  ( ( S e. ( SubGrp ` G ) /\ K e. ( P pSyl G ) /\ K C_ S ) -> K e. ( P pSyl H ) )  |