Description: A subgroup is a subset. (Contributed by Mario Carneiro, 2-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | issubg.b | |- B = ( Base ` G ) |
|
Assertion | subgss | |- ( S e. ( SubGrp ` G ) -> S C_ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubg.b | |- B = ( Base ` G ) |
|
2 | 1 | issubg | |- ( S e. ( SubGrp ` G ) <-> ( G e. Grp /\ S C_ B /\ ( G |`s S ) e. Grp ) ) |
3 | 2 | simp2bi | |- ( S e. ( SubGrp ` G ) -> S C_ B ) |