Step |
Hyp |
Ref |
Expression |
1 |
|
subgrcl |
|- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
2 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
3 |
2
|
issubg3 |
|- ( G e. Grp -> ( S e. ( SubGrp ` G ) <-> ( S e. ( SubMnd ` G ) /\ A. x e. S ( ( invg ` G ) ` x ) e. S ) ) ) |
4 |
1 3
|
syl |
|- ( S e. ( SubGrp ` G ) -> ( S e. ( SubGrp ` G ) <-> ( S e. ( SubMnd ` G ) /\ A. x e. S ( ( invg ` G ) ` x ) e. S ) ) ) |
5 |
4
|
ibi |
|- ( S e. ( SubGrp ` G ) -> ( S e. ( SubMnd ` G ) /\ A. x e. S ( ( invg ` G ) ` x ) e. S ) ) |
6 |
5
|
simpld |
|- ( S e. ( SubGrp ` G ) -> S e. ( SubMnd ` G ) ) |