Step |
Hyp |
Ref |
Expression |
1 |
|
subgtgp.h |
|- H = ( G |`s S ) |
2 |
1
|
subggrp |
|- ( S e. ( SubGrp ` G ) -> H e. Grp ) |
3 |
2
|
adantl |
|- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> H e. Grp ) |
4 |
|
tgptmd |
|- ( G e. TopGrp -> G e. TopMnd ) |
5 |
|
subgsubm |
|- ( S e. ( SubGrp ` G ) -> S e. ( SubMnd ` G ) ) |
6 |
1
|
submtmd |
|- ( ( G e. TopMnd /\ S e. ( SubMnd ` G ) ) -> H e. TopMnd ) |
7 |
4 5 6
|
syl2an |
|- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> H e. TopMnd ) |
8 |
1
|
subgbas |
|- ( S e. ( SubGrp ` G ) -> S = ( Base ` H ) ) |
9 |
8
|
adantl |
|- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> S = ( Base ` H ) ) |
10 |
9
|
mpteq1d |
|- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( x e. S |-> ( ( invg ` H ) ` x ) ) = ( x e. ( Base ` H ) |-> ( ( invg ` H ) ` x ) ) ) |
11 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
12 |
|
eqid |
|- ( invg ` H ) = ( invg ` H ) |
13 |
1 11 12
|
subginv |
|- ( ( S e. ( SubGrp ` G ) /\ x e. S ) -> ( ( invg ` G ) ` x ) = ( ( invg ` H ) ` x ) ) |
14 |
13
|
adantll |
|- ( ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) /\ x e. S ) -> ( ( invg ` G ) ` x ) = ( ( invg ` H ) ` x ) ) |
15 |
14
|
mpteq2dva |
|- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( x e. S |-> ( ( invg ` G ) ` x ) ) = ( x e. S |-> ( ( invg ` H ) ` x ) ) ) |
16 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
17 |
16 12
|
grpinvf |
|- ( H e. Grp -> ( invg ` H ) : ( Base ` H ) --> ( Base ` H ) ) |
18 |
3 17
|
syl |
|- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( invg ` H ) : ( Base ` H ) --> ( Base ` H ) ) |
19 |
18
|
feqmptd |
|- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( invg ` H ) = ( x e. ( Base ` H ) |-> ( ( invg ` H ) ` x ) ) ) |
20 |
10 15 19
|
3eqtr4rd |
|- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( invg ` H ) = ( x e. S |-> ( ( invg ` G ) ` x ) ) ) |
21 |
|
eqid |
|- ( ( TopOpen ` G ) |`t S ) = ( ( TopOpen ` G ) |`t S ) |
22 |
|
eqid |
|- ( TopOpen ` G ) = ( TopOpen ` G ) |
23 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
24 |
22 23
|
tgptopon |
|- ( G e. TopGrp -> ( TopOpen ` G ) e. ( TopOn ` ( Base ` G ) ) ) |
25 |
24
|
adantr |
|- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( TopOpen ` G ) e. ( TopOn ` ( Base ` G ) ) ) |
26 |
23
|
subgss |
|- ( S e. ( SubGrp ` G ) -> S C_ ( Base ` G ) ) |
27 |
26
|
adantl |
|- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> S C_ ( Base ` G ) ) |
28 |
|
tgpgrp |
|- ( G e. TopGrp -> G e. Grp ) |
29 |
28
|
adantr |
|- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> G e. Grp ) |
30 |
23 11
|
grpinvf |
|- ( G e. Grp -> ( invg ` G ) : ( Base ` G ) --> ( Base ` G ) ) |
31 |
29 30
|
syl |
|- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( invg ` G ) : ( Base ` G ) --> ( Base ` G ) ) |
32 |
31
|
feqmptd |
|- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( invg ` G ) = ( x e. ( Base ` G ) |-> ( ( invg ` G ) ` x ) ) ) |
33 |
22 11
|
tgpinv |
|- ( G e. TopGrp -> ( invg ` G ) e. ( ( TopOpen ` G ) Cn ( TopOpen ` G ) ) ) |
34 |
33
|
adantr |
|- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( invg ` G ) e. ( ( TopOpen ` G ) Cn ( TopOpen ` G ) ) ) |
35 |
32 34
|
eqeltrrd |
|- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( x e. ( Base ` G ) |-> ( ( invg ` G ) ` x ) ) e. ( ( TopOpen ` G ) Cn ( TopOpen ` G ) ) ) |
36 |
21 25 27 35
|
cnmpt1res |
|- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( x e. S |-> ( ( invg ` G ) ` x ) ) e. ( ( ( TopOpen ` G ) |`t S ) Cn ( TopOpen ` G ) ) ) |
37 |
20 36
|
eqeltrd |
|- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( invg ` H ) e. ( ( ( TopOpen ` G ) |`t S ) Cn ( TopOpen ` G ) ) ) |
38 |
18
|
frnd |
|- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ran ( invg ` H ) C_ ( Base ` H ) ) |
39 |
38 9
|
sseqtrrd |
|- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ran ( invg ` H ) C_ S ) |
40 |
|
cnrest2 |
|- ( ( ( TopOpen ` G ) e. ( TopOn ` ( Base ` G ) ) /\ ran ( invg ` H ) C_ S /\ S C_ ( Base ` G ) ) -> ( ( invg ` H ) e. ( ( ( TopOpen ` G ) |`t S ) Cn ( TopOpen ` G ) ) <-> ( invg ` H ) e. ( ( ( TopOpen ` G ) |`t S ) Cn ( ( TopOpen ` G ) |`t S ) ) ) ) |
41 |
25 39 27 40
|
syl3anc |
|- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( ( invg ` H ) e. ( ( ( TopOpen ` G ) |`t S ) Cn ( TopOpen ` G ) ) <-> ( invg ` H ) e. ( ( ( TopOpen ` G ) |`t S ) Cn ( ( TopOpen ` G ) |`t S ) ) ) ) |
42 |
37 41
|
mpbid |
|- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( invg ` H ) e. ( ( ( TopOpen ` G ) |`t S ) Cn ( ( TopOpen ` G ) |`t S ) ) ) |
43 |
1 22
|
resstopn |
|- ( ( TopOpen ` G ) |`t S ) = ( TopOpen ` H ) |
44 |
43 12
|
istgp |
|- ( H e. TopGrp <-> ( H e. Grp /\ H e. TopMnd /\ ( invg ` H ) e. ( ( ( TopOpen ` G ) |`t S ) Cn ( ( TopOpen ` G ) |`t S ) ) ) ) |
45 |
3 7 42 44
|
syl3anbrc |
|- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> H e. TopGrp ) |