| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id |  |-  ( A e. CC -> A e. CC ) | 
						
							| 2 |  | 2cnd |  |-  ( A e. CC -> 2 e. CC ) | 
						
							| 3 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 4 | 3 | a1i |  |-  ( A e. CC -> 2 =/= 0 ) | 
						
							| 5 | 1 2 4 | divcan1d |  |-  ( A e. CC -> ( ( A / 2 ) x. 2 ) = A ) | 
						
							| 6 | 5 | eqcomd |  |-  ( A e. CC -> A = ( ( A / 2 ) x. 2 ) ) | 
						
							| 7 | 6 | oveq1d |  |-  ( A e. CC -> ( A - ( A / 2 ) ) = ( ( ( A / 2 ) x. 2 ) - ( A / 2 ) ) ) | 
						
							| 8 |  | halfcl |  |-  ( A e. CC -> ( A / 2 ) e. CC ) | 
						
							| 9 | 8 2 | mulcomd |  |-  ( A e. CC -> ( ( A / 2 ) x. 2 ) = ( 2 x. ( A / 2 ) ) ) | 
						
							| 10 | 9 | oveq1d |  |-  ( A e. CC -> ( ( ( A / 2 ) x. 2 ) - ( A / 2 ) ) = ( ( 2 x. ( A / 2 ) ) - ( A / 2 ) ) ) | 
						
							| 11 | 2 8 | mulsubfacd |  |-  ( A e. CC -> ( ( 2 x. ( A / 2 ) ) - ( A / 2 ) ) = ( ( 2 - 1 ) x. ( A / 2 ) ) ) | 
						
							| 12 |  | 2m1e1 |  |-  ( 2 - 1 ) = 1 | 
						
							| 13 | 12 | a1i |  |-  ( A e. CC -> ( 2 - 1 ) = 1 ) | 
						
							| 14 | 13 | oveq1d |  |-  ( A e. CC -> ( ( 2 - 1 ) x. ( A / 2 ) ) = ( 1 x. ( A / 2 ) ) ) | 
						
							| 15 | 8 | mullidd |  |-  ( A e. CC -> ( 1 x. ( A / 2 ) ) = ( A / 2 ) ) | 
						
							| 16 | 11 14 15 | 3eqtrd |  |-  ( A e. CC -> ( ( 2 x. ( A / 2 ) ) - ( A / 2 ) ) = ( A / 2 ) ) | 
						
							| 17 | 7 10 16 | 3eqtrd |  |-  ( A e. CC -> ( A - ( A / 2 ) ) = ( A / 2 ) ) |