Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|- ( A e. CC -> A e. CC ) |
2 |
|
2cnd |
|- ( A e. CC -> 2 e. CC ) |
3 |
|
2ne0 |
|- 2 =/= 0 |
4 |
3
|
a1i |
|- ( A e. CC -> 2 =/= 0 ) |
5 |
1 2 4
|
divcan1d |
|- ( A e. CC -> ( ( A / 2 ) x. 2 ) = A ) |
6 |
5
|
eqcomd |
|- ( A e. CC -> A = ( ( A / 2 ) x. 2 ) ) |
7 |
6
|
oveq1d |
|- ( A e. CC -> ( A - ( A / 2 ) ) = ( ( ( A / 2 ) x. 2 ) - ( A / 2 ) ) ) |
8 |
|
halfcl |
|- ( A e. CC -> ( A / 2 ) e. CC ) |
9 |
8 2
|
mulcomd |
|- ( A e. CC -> ( ( A / 2 ) x. 2 ) = ( 2 x. ( A / 2 ) ) ) |
10 |
9
|
oveq1d |
|- ( A e. CC -> ( ( ( A / 2 ) x. 2 ) - ( A / 2 ) ) = ( ( 2 x. ( A / 2 ) ) - ( A / 2 ) ) ) |
11 |
2 8
|
mulsubfacd |
|- ( A e. CC -> ( ( 2 x. ( A / 2 ) ) - ( A / 2 ) ) = ( ( 2 - 1 ) x. ( A / 2 ) ) ) |
12 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
13 |
12
|
a1i |
|- ( A e. CC -> ( 2 - 1 ) = 1 ) |
14 |
13
|
oveq1d |
|- ( A e. CC -> ( ( 2 - 1 ) x. ( A / 2 ) ) = ( 1 x. ( A / 2 ) ) ) |
15 |
8
|
mulid2d |
|- ( A e. CC -> ( 1 x. ( A / 2 ) ) = ( A / 2 ) ) |
16 |
11 14 15
|
3eqtrd |
|- ( A e. CC -> ( ( 2 x. ( A / 2 ) ) - ( A / 2 ) ) = ( A / 2 ) ) |
17 |
7 10 16
|
3eqtrd |
|- ( A e. CC -> ( A - ( A / 2 ) ) = ( A / 2 ) ) |