Metamath Proof Explorer


Theorem subid

Description: Subtraction of a number from itself. (Contributed by NM, 8-Oct-1999) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion subid
|- ( A e. CC -> ( A - A ) = 0 )

Proof

Step Hyp Ref Expression
1 addid1
 |-  ( A e. CC -> ( A + 0 ) = A )
2 1 oveq1d
 |-  ( A e. CC -> ( ( A + 0 ) - A ) = ( A - A ) )
3 0cn
 |-  0 e. CC
4 pncan2
 |-  ( ( A e. CC /\ 0 e. CC ) -> ( ( A + 0 ) - A ) = 0 )
5 3 4 mpan2
 |-  ( A e. CC -> ( ( A + 0 ) - A ) = 0 )
6 2 5 eqtr3d
 |-  ( A e. CC -> ( A - A ) = 0 )