Metamath Proof Explorer


Theorem subid1d

Description: Identity law for subtraction. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypothesis negidd.1
|- ( ph -> A e. CC )
Assertion subid1d
|- ( ph -> ( A - 0 ) = A )

Proof

Step Hyp Ref Expression
1 negidd.1
 |-  ( ph -> A e. CC )
2 subid1
 |-  ( A e. CC -> ( A - 0 ) = A )
3 1 2 syl
 |-  ( ph -> ( A - 0 ) = A )