Description: Swap subtrahends in an inequality. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | leidd.1 | |- ( ph -> A e. RR ) |
|
| ltnegd.2 | |- ( ph -> B e. RR ) |
||
| ltadd1d.3 | |- ( ph -> C e. RR ) |
||
| subled.4 | |- ( ph -> ( A - B ) <_ C ) |
||
| Assertion | subled | |- ( ph -> ( A - C ) <_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leidd.1 | |- ( ph -> A e. RR ) |
|
| 2 | ltnegd.2 | |- ( ph -> B e. RR ) |
|
| 3 | ltadd1d.3 | |- ( ph -> C e. RR ) |
|
| 4 | subled.4 | |- ( ph -> ( A - B ) <_ C ) |
|
| 5 | suble | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A - B ) <_ C <-> ( A - C ) <_ B ) ) |
|
| 6 | 1 2 3 5 | syl3anc | |- ( ph -> ( ( A - B ) <_ C <-> ( A - C ) <_ B ) ) |
| 7 | 4 6 | mpbid | |- ( ph -> ( A - C ) <_ B ) |