| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sublevolico.a |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | sublevolico.b |  |-  ( ph -> B e. RR ) | 
						
							| 3 | 2 1 | resubcld |  |-  ( ph -> ( B - A ) e. RR ) | 
						
							| 4 |  | eqidd |  |-  ( ph -> ( B - A ) = ( B - A ) ) | 
						
							| 5 | 3 4 | eqled |  |-  ( ph -> ( B - A ) <_ ( B - A ) ) | 
						
							| 6 | 5 | adantr |  |-  ( ( ph /\ A < B ) -> ( B - A ) <_ ( B - A ) ) | 
						
							| 7 |  | volico |  |-  ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,) B ) ) = if ( A < B , ( B - A ) , 0 ) ) | 
						
							| 8 | 1 2 7 | syl2anc |  |-  ( ph -> ( vol ` ( A [,) B ) ) = if ( A < B , ( B - A ) , 0 ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ph /\ A < B ) -> ( vol ` ( A [,) B ) ) = if ( A < B , ( B - A ) , 0 ) ) | 
						
							| 10 |  | iftrue |  |-  ( A < B -> if ( A < B , ( B - A ) , 0 ) = ( B - A ) ) | 
						
							| 11 | 10 | adantl |  |-  ( ( ph /\ A < B ) -> if ( A < B , ( B - A ) , 0 ) = ( B - A ) ) | 
						
							| 12 | 9 11 | eqtr2d |  |-  ( ( ph /\ A < B ) -> ( B - A ) = ( vol ` ( A [,) B ) ) ) | 
						
							| 13 | 6 12 | breqtrd |  |-  ( ( ph /\ A < B ) -> ( B - A ) <_ ( vol ` ( A [,) B ) ) ) | 
						
							| 14 |  | simpr |  |-  ( ( ph /\ -. A < B ) -> -. A < B ) | 
						
							| 15 | 2 1 | lenltd |  |-  ( ph -> ( B <_ A <-> -. A < B ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ph /\ -. A < B ) -> ( B <_ A <-> -. A < B ) ) | 
						
							| 17 | 14 16 | mpbird |  |-  ( ( ph /\ -. A < B ) -> B <_ A ) | 
						
							| 18 | 2 | adantr |  |-  ( ( ph /\ -. A < B ) -> B e. RR ) | 
						
							| 19 | 1 | adantr |  |-  ( ( ph /\ -. A < B ) -> A e. RR ) | 
						
							| 20 | 18 19 | suble0d |  |-  ( ( ph /\ -. A < B ) -> ( ( B - A ) <_ 0 <-> B <_ A ) ) | 
						
							| 21 | 17 20 | mpbird |  |-  ( ( ph /\ -. A < B ) -> ( B - A ) <_ 0 ) | 
						
							| 22 | 8 | adantr |  |-  ( ( ph /\ -. A < B ) -> ( vol ` ( A [,) B ) ) = if ( A < B , ( B - A ) , 0 ) ) | 
						
							| 23 |  | iffalse |  |-  ( -. A < B -> if ( A < B , ( B - A ) , 0 ) = 0 ) | 
						
							| 24 | 23 | adantl |  |-  ( ( ph /\ -. A < B ) -> if ( A < B , ( B - A ) , 0 ) = 0 ) | 
						
							| 25 | 22 24 | eqtr2d |  |-  ( ( ph /\ -. A < B ) -> 0 = ( vol ` ( A [,) B ) ) ) | 
						
							| 26 | 21 25 | breqtrd |  |-  ( ( ph /\ -. A < B ) -> ( B - A ) <_ ( vol ` ( A [,) B ) ) ) | 
						
							| 27 | 13 26 | pm2.61dan |  |-  ( ph -> ( B - A ) <_ ( vol ` ( A [,) B ) ) ) |