| Step |
Hyp |
Ref |
Expression |
| 1 |
|
submmnd.h |
|- H = ( M |`s S ) |
| 2 |
|
subm0.z |
|- .0. = ( 0g ` M ) |
| 3 |
|
submrcl |
|- ( S e. ( SubMnd ` M ) -> M e. Mnd ) |
| 4 |
1
|
submmnd |
|- ( S e. ( SubMnd ` M ) -> H e. Mnd ) |
| 5 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
| 6 |
5
|
submss |
|- ( S e. ( SubMnd ` M ) -> S C_ ( Base ` M ) ) |
| 7 |
2
|
subm0cl |
|- ( S e. ( SubMnd ` M ) -> .0. e. S ) |
| 8 |
5 2 1
|
submnd0 |
|- ( ( ( M e. Mnd /\ H e. Mnd ) /\ ( S C_ ( Base ` M ) /\ .0. e. S ) ) -> .0. = ( 0g ` H ) ) |
| 9 |
3 4 6 7 8
|
syl22anc |
|- ( S e. ( SubMnd ` M ) -> .0. = ( 0g ` H ) ) |