Step |
Hyp |
Ref |
Expression |
1 |
|
submmnd.h |
|- H = ( M |`s S ) |
2 |
|
subm0.z |
|- .0. = ( 0g ` M ) |
3 |
|
submrcl |
|- ( S e. ( SubMnd ` M ) -> M e. Mnd ) |
4 |
1
|
submmnd |
|- ( S e. ( SubMnd ` M ) -> H e. Mnd ) |
5 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
6 |
5
|
submss |
|- ( S e. ( SubMnd ` M ) -> S C_ ( Base ` M ) ) |
7 |
2
|
subm0cl |
|- ( S e. ( SubMnd ` M ) -> .0. e. S ) |
8 |
5 2 1
|
submnd0 |
|- ( ( ( M e. Mnd /\ H e. Mnd ) /\ ( S C_ ( Base ` M ) /\ .0. e. S ) ) -> .0. = ( 0g ` H ) ) |
9 |
3 4 6 7 8
|
syl22anc |
|- ( S e. ( SubMnd ` M ) -> .0. = ( 0g ` H ) ) |