| Step | Hyp | Ref | Expression | 
						
							| 1 |  | submabas.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | submabas.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | eqid |  |-  ( D Mat R ) = ( D Mat R ) | 
						
							| 4 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 5 |  | eqid |  |-  ( Base ` ( D Mat R ) ) = ( Base ` ( D Mat R ) ) | 
						
							| 6 | 1 2 | matrcl |  |-  ( M e. B -> ( N e. Fin /\ R e. _V ) ) | 
						
							| 7 | 6 | simpld |  |-  ( M e. B -> N e. Fin ) | 
						
							| 8 |  | ssfi |  |-  ( ( N e. Fin /\ D C_ N ) -> D e. Fin ) | 
						
							| 9 | 7 8 | sylan |  |-  ( ( M e. B /\ D C_ N ) -> D e. Fin ) | 
						
							| 10 | 6 | simprd |  |-  ( M e. B -> R e. _V ) | 
						
							| 11 | 10 | adantr |  |-  ( ( M e. B /\ D C_ N ) -> R e. _V ) | 
						
							| 12 |  | ssel |  |-  ( D C_ N -> ( i e. D -> i e. N ) ) | 
						
							| 13 | 12 | adantl |  |-  ( ( M e. B /\ D C_ N ) -> ( i e. D -> i e. N ) ) | 
						
							| 14 | 13 | imp |  |-  ( ( ( M e. B /\ D C_ N ) /\ i e. D ) -> i e. N ) | 
						
							| 15 | 14 | 3adant3 |  |-  ( ( ( M e. B /\ D C_ N ) /\ i e. D /\ j e. D ) -> i e. N ) | 
						
							| 16 |  | ssel |  |-  ( D C_ N -> ( j e. D -> j e. N ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( M e. B /\ D C_ N ) -> ( j e. D -> j e. N ) ) | 
						
							| 18 | 17 | imp |  |-  ( ( ( M e. B /\ D C_ N ) /\ j e. D ) -> j e. N ) | 
						
							| 19 | 18 | 3adant2 |  |-  ( ( ( M e. B /\ D C_ N ) /\ i e. D /\ j e. D ) -> j e. N ) | 
						
							| 20 | 2 | eleq2i |  |-  ( M e. B <-> M e. ( Base ` A ) ) | 
						
							| 21 | 20 | biimpi |  |-  ( M e. B -> M e. ( Base ` A ) ) | 
						
							| 22 | 21 | adantr |  |-  ( ( M e. B /\ D C_ N ) -> M e. ( Base ` A ) ) | 
						
							| 23 | 22 | 3ad2ant1 |  |-  ( ( ( M e. B /\ D C_ N ) /\ i e. D /\ j e. D ) -> M e. ( Base ` A ) ) | 
						
							| 24 | 1 4 | matecl |  |-  ( ( i e. N /\ j e. N /\ M e. ( Base ` A ) ) -> ( i M j ) e. ( Base ` R ) ) | 
						
							| 25 | 15 19 23 24 | syl3anc |  |-  ( ( ( M e. B /\ D C_ N ) /\ i e. D /\ j e. D ) -> ( i M j ) e. ( Base ` R ) ) | 
						
							| 26 | 3 4 5 9 11 25 | matbas2d |  |-  ( ( M e. B /\ D C_ N ) -> ( i e. D , j e. D |-> ( i M j ) ) e. ( Base ` ( D Mat R ) ) ) |