Description: The base set of a submonoid. (Contributed by Stefan O'Rear, 15-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | submmnd.h | |- H = ( M |`s S ) |
|
Assertion | submbas | |- ( S e. ( SubMnd ` M ) -> S = ( Base ` H ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submmnd.h | |- H = ( M |`s S ) |
|
2 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
3 | 2 | submss | |- ( S e. ( SubMnd ` M ) -> S C_ ( Base ` M ) ) |
4 | 1 2 | ressbas2 | |- ( S C_ ( Base ` M ) -> S = ( Base ` H ) ) |
5 | 3 4 | syl | |- ( S e. ( SubMnd ` M ) -> S = ( Base ` H ) ) |