Metamath Proof Explorer


Theorem submcld

Description: Submonoids are closed under the monoid operation. (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypotheses submcld.1
|- .+ = ( +g ` M )
submcld.2
|- ( ph -> S e. ( SubMnd ` M ) )
submcld.3
|- ( ph -> X e. S )
submcld.4
|- ( ph -> Y e. S )
Assertion submcld
|- ( ph -> ( X .+ Y ) e. S )

Proof

Step Hyp Ref Expression
1 submcld.1
 |-  .+ = ( +g ` M )
2 submcld.2
 |-  ( ph -> S e. ( SubMnd ` M ) )
3 submcld.3
 |-  ( ph -> X e. S )
4 submcld.4
 |-  ( ph -> Y e. S )
5 1 submcl
 |-  ( ( S e. ( SubMnd ` M ) /\ X e. S /\ Y e. S ) -> ( X .+ Y ) e. S )
6 2 3 4 5 syl3anc
 |-  ( ph -> ( X .+ Y ) e. S )