Description: Submonoids are closed under the monoid operation. (Contributed by Thierry Arnoux, 4-May-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | submcld.1 | |- .+ = ( +g ` M ) |
|
submcld.2 | |- ( ph -> S e. ( SubMnd ` M ) ) |
||
submcld.3 | |- ( ph -> X e. S ) |
||
submcld.4 | |- ( ph -> Y e. S ) |
||
Assertion | submcld | |- ( ph -> ( X .+ Y ) e. S ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submcld.1 | |- .+ = ( +g ` M ) |
|
2 | submcld.2 | |- ( ph -> S e. ( SubMnd ` M ) ) |
|
3 | submcld.3 | |- ( ph -> X e. S ) |
|
4 | submcld.4 | |- ( ph -> Y e. S ) |
|
5 | 1 | submcl | |- ( ( S e. ( SubMnd ` M ) /\ X e. S /\ Y e. S ) -> ( X .+ Y ) e. S ) |
6 | 2 3 4 5 | syl3anc | |- ( ph -> ( X .+ Y ) e. S ) |