Description: A submonoid of a commutative monoid is also commutative. (Contributed by Mario Carneiro, 24-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | subgabl.h | |- H = ( G |`s S ) |
|
Assertion | submcmn | |- ( ( G e. CMnd /\ S e. ( SubMnd ` G ) ) -> H e. CMnd ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgabl.h | |- H = ( G |`s S ) |
|
2 | 1 | submmnd | |- ( S e. ( SubMnd ` G ) -> H e. Mnd ) |
3 | 1 | subcmn | |- ( ( G e. CMnd /\ H e. Mnd ) -> H e. CMnd ) |
4 | 2 3 | sylan2 | |- ( ( G e. CMnd /\ S e. ( SubMnd ` G ) ) -> H e. CMnd ) |