Description: Submagmas are themselves magmas under the given operation. (Contributed by AV, 26-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | submgmmgm.h | |- H = ( M |`s S )  | 
					|
| Assertion | submgmmgm | |- ( S e. ( SubMgm ` M ) -> H e. Mgm )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | submgmmgm.h | |- H = ( M |`s S )  | 
						|
| 2 | submgmrcl | |- ( S e. ( SubMgm ` M ) -> M e. Mgm )  | 
						|
| 3 | eqid | |- ( Base ` M ) = ( Base ` M )  | 
						|
| 4 | 3 1 | issubmgm2 | |- ( M e. Mgm -> ( S e. ( SubMgm ` M ) <-> ( S C_ ( Base ` M ) /\ H e. Mgm ) ) )  | 
						
| 5 | 2 4 | syl | |- ( S e. ( SubMgm ` M ) -> ( S e. ( SubMgm ` M ) <-> ( S C_ ( Base ` M ) /\ H e. Mgm ) ) )  | 
						
| 6 | 5 | ibi | |- ( S e. ( SubMgm ` M ) -> ( S C_ ( Base ` M ) /\ H e. Mgm ) )  | 
						
| 7 | 6 | simprd | |- ( S e. ( SubMgm ` M ) -> H e. Mgm )  |