Description: Submagmas are subsets of the base set. (Contributed by AV, 26-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | submgmss.b | |- B = ( Base ` M ) |
|
| Assertion | submgmss | |- ( S e. ( SubMgm ` M ) -> S C_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submgmss.b | |- B = ( Base ` M ) |
|
| 2 | submgmrcl | |- ( S e. ( SubMgm ` M ) -> M e. Mgm ) |
|
| 3 | eqid | |- ( M |`s S ) = ( M |`s S ) |
|
| 4 | 1 3 | issubmgm2 | |- ( M e. Mgm -> ( S e. ( SubMgm ` M ) <-> ( S C_ B /\ ( M |`s S ) e. Mgm ) ) ) |
| 5 | 2 4 | syl | |- ( S e. ( SubMgm ` M ) -> ( S e. ( SubMgm ` M ) <-> ( S C_ B /\ ( M |`s S ) e. Mgm ) ) ) |
| 6 | 5 | ibi | |- ( S e. ( SubMgm ` M ) -> ( S C_ B /\ ( M |`s S ) e. Mgm ) ) |
| 7 | 6 | simpld | |- ( S e. ( SubMgm ` M ) -> S C_ B ) |