Metamath Proof Explorer


Theorem submid

Description: Every monoid is trivially a submonoid of itself. (Contributed by Stefan O'Rear, 15-Aug-2015)

Ref Expression
Hypothesis submss.b
|- B = ( Base ` M )
Assertion submid
|- ( M e. Mnd -> B e. ( SubMnd ` M ) )

Proof

Step Hyp Ref Expression
1 submss.b
 |-  B = ( Base ` M )
2 ssidd
 |-  ( M e. Mnd -> B C_ B )
3 eqid
 |-  ( 0g ` M ) = ( 0g ` M )
4 1 3 mndidcl
 |-  ( M e. Mnd -> ( 0g ` M ) e. B )
5 1 ressid
 |-  ( M e. Mnd -> ( M |`s B ) = M )
6 id
 |-  ( M e. Mnd -> M e. Mnd )
7 5 6 eqeltrd
 |-  ( M e. Mnd -> ( M |`s B ) e. Mnd )
8 eqid
 |-  ( M |`s B ) = ( M |`s B )
9 1 3 8 issubm2
 |-  ( M e. Mnd -> ( B e. ( SubMnd ` M ) <-> ( B C_ B /\ ( 0g ` M ) e. B /\ ( M |`s B ) e. Mnd ) ) )
10 2 4 7 9 mpbir3and
 |-  ( M e. Mnd -> B e. ( SubMnd ` M ) )