Step |
Hyp |
Ref |
Expression |
1 |
|
submss.b |
|- B = ( Base ` M ) |
2 |
|
ssidd |
|- ( M e. Mnd -> B C_ B ) |
3 |
|
eqid |
|- ( 0g ` M ) = ( 0g ` M ) |
4 |
1 3
|
mndidcl |
|- ( M e. Mnd -> ( 0g ` M ) e. B ) |
5 |
1
|
ressid |
|- ( M e. Mnd -> ( M |`s B ) = M ) |
6 |
|
id |
|- ( M e. Mnd -> M e. Mnd ) |
7 |
5 6
|
eqeltrd |
|- ( M e. Mnd -> ( M |`s B ) e. Mnd ) |
8 |
|
eqid |
|- ( M |`s B ) = ( M |`s B ) |
9 |
1 3 8
|
issubm2 |
|- ( M e. Mnd -> ( B e. ( SubMnd ` M ) <-> ( B C_ B /\ ( 0g ` M ) e. B /\ ( M |`s B ) e. Mnd ) ) ) |
10 |
2 4 7 9
|
mpbir3and |
|- ( M e. Mnd -> B e. ( SubMnd ` M ) ) |