| Step |
Hyp |
Ref |
Expression |
| 1 |
|
submss.b |
|- B = ( Base ` M ) |
| 2 |
|
ssidd |
|- ( M e. Mnd -> B C_ B ) |
| 3 |
|
eqid |
|- ( 0g ` M ) = ( 0g ` M ) |
| 4 |
1 3
|
mndidcl |
|- ( M e. Mnd -> ( 0g ` M ) e. B ) |
| 5 |
1
|
ressid |
|- ( M e. Mnd -> ( M |`s B ) = M ) |
| 6 |
|
id |
|- ( M e. Mnd -> M e. Mnd ) |
| 7 |
5 6
|
eqeltrd |
|- ( M e. Mnd -> ( M |`s B ) e. Mnd ) |
| 8 |
|
eqid |
|- ( M |`s B ) = ( M |`s B ) |
| 9 |
1 3 8
|
issubm2 |
|- ( M e. Mnd -> ( B e. ( SubMnd ` M ) <-> ( B C_ B /\ ( 0g ` M ) e. B /\ ( M |`s B ) e. Mnd ) ) ) |
| 10 |
2 4 7 9
|
mpbir3and |
|- ( M e. Mnd -> B e. ( SubMnd ` M ) ) |