| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							submmnd.h | 
							 |-  H = ( M |`s S )  | 
						
						
							| 2 | 
							
								
							 | 
							submrcl | 
							 |-  ( S e. ( SubMnd ` M ) -> M e. Mnd )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` M ) = ( Base ` M )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							 |-  ( 0g ` M ) = ( 0g ` M )  | 
						
						
							| 5 | 
							
								3 4 1
							 | 
							issubm2 | 
							 |-  ( M e. Mnd -> ( S e. ( SubMnd ` M ) <-> ( S C_ ( Base ` M ) /\ ( 0g ` M ) e. S /\ H e. Mnd ) ) )  | 
						
						
							| 6 | 
							
								2 5
							 | 
							syl | 
							 |-  ( S e. ( SubMnd ` M ) -> ( S e. ( SubMnd ` M ) <-> ( S C_ ( Base ` M ) /\ ( 0g ` M ) e. S /\ H e. Mnd ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							ibi | 
							 |-  ( S e. ( SubMnd ` M ) -> ( S C_ ( Base ` M ) /\ ( 0g ` M ) e. S /\ H e. Mnd ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							simp3d | 
							 |-  ( S e. ( SubMnd ` M ) -> H e. Mnd )  |