| Step | Hyp | Ref | Expression | 
						
							| 1 |  | submmulgcl.t |  |-  .xb = ( .g ` G ) | 
						
							| 2 |  | submmulg.h |  |-  H = ( G |`s S ) | 
						
							| 3 |  | submmulg.t |  |-  .x. = ( .g ` H ) | 
						
							| 4 |  | simpl1 |  |-  ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N e. NN ) -> S e. ( SubMnd ` G ) ) | 
						
							| 5 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 6 | 2 5 | ressplusg |  |-  ( S e. ( SubMnd ` G ) -> ( +g ` G ) = ( +g ` H ) ) | 
						
							| 7 | 4 6 | syl |  |-  ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N e. NN ) -> ( +g ` G ) = ( +g ` H ) ) | 
						
							| 8 | 7 | seqeq2d |  |-  ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N e. NN ) -> seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ) | 
						
							| 9 | 8 | fveq1d |  |-  ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N e. NN ) -> ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) = ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` N ) ) | 
						
							| 10 |  | simpr |  |-  ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N e. NN ) -> N e. NN ) | 
						
							| 11 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 12 | 11 | submss |  |-  ( S e. ( SubMnd ` G ) -> S C_ ( Base ` G ) ) | 
						
							| 13 | 12 | 3ad2ant1 |  |-  ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) -> S C_ ( Base ` G ) ) | 
						
							| 14 |  | simp3 |  |-  ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) -> X e. S ) | 
						
							| 15 | 13 14 | sseldd |  |-  ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) -> X e. ( Base ` G ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N e. NN ) -> X e. ( Base ` G ) ) | 
						
							| 17 |  | eqid |  |-  seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) | 
						
							| 18 | 11 5 1 17 | mulgnn |  |-  ( ( N e. NN /\ X e. ( Base ` G ) ) -> ( N .xb X ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) | 
						
							| 19 | 10 16 18 | syl2anc |  |-  ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N e. NN ) -> ( N .xb X ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) | 
						
							| 20 | 2 | submbas |  |-  ( S e. ( SubMnd ` G ) -> S = ( Base ` H ) ) | 
						
							| 21 | 20 | 3ad2ant1 |  |-  ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) -> S = ( Base ` H ) ) | 
						
							| 22 | 14 21 | eleqtrd |  |-  ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) -> X e. ( Base ` H ) ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N e. NN ) -> X e. ( Base ` H ) ) | 
						
							| 24 |  | eqid |  |-  ( Base ` H ) = ( Base ` H ) | 
						
							| 25 |  | eqid |  |-  ( +g ` H ) = ( +g ` H ) | 
						
							| 26 |  | eqid |  |-  seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) | 
						
							| 27 | 24 25 3 26 | mulgnn |  |-  ( ( N e. NN /\ X e. ( Base ` H ) ) -> ( N .x. X ) = ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` N ) ) | 
						
							| 28 | 10 23 27 | syl2anc |  |-  ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N e. NN ) -> ( N .x. X ) = ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` N ) ) | 
						
							| 29 | 9 19 28 | 3eqtr4d |  |-  ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N e. NN ) -> ( N .xb X ) = ( N .x. X ) ) | 
						
							| 30 |  | simpl1 |  |-  ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N = 0 ) -> S e. ( SubMnd ` G ) ) | 
						
							| 31 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 32 | 2 31 | subm0 |  |-  ( S e. ( SubMnd ` G ) -> ( 0g ` G ) = ( 0g ` H ) ) | 
						
							| 33 | 30 32 | syl |  |-  ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N = 0 ) -> ( 0g ` G ) = ( 0g ` H ) ) | 
						
							| 34 | 15 | adantr |  |-  ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N = 0 ) -> X e. ( Base ` G ) ) | 
						
							| 35 | 11 31 1 | mulg0 |  |-  ( X e. ( Base ` G ) -> ( 0 .xb X ) = ( 0g ` G ) ) | 
						
							| 36 | 34 35 | syl |  |-  ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N = 0 ) -> ( 0 .xb X ) = ( 0g ` G ) ) | 
						
							| 37 | 22 | adantr |  |-  ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N = 0 ) -> X e. ( Base ` H ) ) | 
						
							| 38 |  | eqid |  |-  ( 0g ` H ) = ( 0g ` H ) | 
						
							| 39 | 24 38 3 | mulg0 |  |-  ( X e. ( Base ` H ) -> ( 0 .x. X ) = ( 0g ` H ) ) | 
						
							| 40 | 37 39 | syl |  |-  ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N = 0 ) -> ( 0 .x. X ) = ( 0g ` H ) ) | 
						
							| 41 | 33 36 40 | 3eqtr4d |  |-  ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N = 0 ) -> ( 0 .xb X ) = ( 0 .x. X ) ) | 
						
							| 42 |  | simpr |  |-  ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N = 0 ) -> N = 0 ) | 
						
							| 43 | 42 | oveq1d |  |-  ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N = 0 ) -> ( N .xb X ) = ( 0 .xb X ) ) | 
						
							| 44 | 42 | oveq1d |  |-  ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N = 0 ) -> ( N .x. X ) = ( 0 .x. X ) ) | 
						
							| 45 | 41 43 44 | 3eqtr4d |  |-  ( ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) /\ N = 0 ) -> ( N .xb X ) = ( N .x. X ) ) | 
						
							| 46 |  | simp2 |  |-  ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) -> N e. NN0 ) | 
						
							| 47 |  | elnn0 |  |-  ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) | 
						
							| 48 | 46 47 | sylib |  |-  ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) -> ( N e. NN \/ N = 0 ) ) | 
						
							| 49 | 29 45 48 | mpjaodan |  |-  ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) -> ( N .xb X ) = ( N .x. X ) ) |