| Step | Hyp | Ref | Expression | 
						
							| 1 |  | submmulgcl.t |  |-  .xb = ( .g ` G ) | 
						
							| 2 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 3 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 4 |  | submrcl |  |-  ( S e. ( SubMnd ` G ) -> G e. Mnd ) | 
						
							| 5 | 2 | submss |  |-  ( S e. ( SubMnd ` G ) -> S C_ ( Base ` G ) ) | 
						
							| 6 | 3 | submcl |  |-  ( ( S e. ( SubMnd ` G ) /\ x e. S /\ y e. S ) -> ( x ( +g ` G ) y ) e. S ) | 
						
							| 7 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 8 | 7 | subm0cl |  |-  ( S e. ( SubMnd ` G ) -> ( 0g ` G ) e. S ) | 
						
							| 9 | 2 1 3 4 5 6 7 8 | mulgnn0subcl |  |-  ( ( S e. ( SubMnd ` G ) /\ N e. NN0 /\ X e. S ) -> ( N .xb X ) e. S ) |