Step |
Hyp |
Ref |
Expression |
1 |
|
submnd0.b |
|- B = ( Base ` G ) |
2 |
|
submnd0.z |
|- .0. = ( 0g ` G ) |
3 |
|
submnd0.h |
|- H = ( G |`s S ) |
4 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
5 |
|
eqid |
|- ( 0g ` H ) = ( 0g ` H ) |
6 |
|
eqid |
|- ( +g ` H ) = ( +g ` H ) |
7 |
|
simprr |
|- ( ( ( G e. Mnd /\ H e. Mnd ) /\ ( S C_ B /\ .0. e. S ) ) -> .0. e. S ) |
8 |
3 1
|
ressbas2 |
|- ( S C_ B -> S = ( Base ` H ) ) |
9 |
8
|
ad2antrl |
|- ( ( ( G e. Mnd /\ H e. Mnd ) /\ ( S C_ B /\ .0. e. S ) ) -> S = ( Base ` H ) ) |
10 |
7 9
|
eleqtrd |
|- ( ( ( G e. Mnd /\ H e. Mnd ) /\ ( S C_ B /\ .0. e. S ) ) -> .0. e. ( Base ` H ) ) |
11 |
|
fvex |
|- ( Base ` H ) e. _V |
12 |
9 11
|
eqeltrdi |
|- ( ( ( G e. Mnd /\ H e. Mnd ) /\ ( S C_ B /\ .0. e. S ) ) -> S e. _V ) |
13 |
12
|
adantr |
|- ( ( ( ( G e. Mnd /\ H e. Mnd ) /\ ( S C_ B /\ .0. e. S ) ) /\ x e. ( Base ` H ) ) -> S e. _V ) |
14 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
15 |
3 14
|
ressplusg |
|- ( S e. _V -> ( +g ` G ) = ( +g ` H ) ) |
16 |
13 15
|
syl |
|- ( ( ( ( G e. Mnd /\ H e. Mnd ) /\ ( S C_ B /\ .0. e. S ) ) /\ x e. ( Base ` H ) ) -> ( +g ` G ) = ( +g ` H ) ) |
17 |
16
|
oveqd |
|- ( ( ( ( G e. Mnd /\ H e. Mnd ) /\ ( S C_ B /\ .0. e. S ) ) /\ x e. ( Base ` H ) ) -> ( .0. ( +g ` G ) x ) = ( .0. ( +g ` H ) x ) ) |
18 |
|
simpll |
|- ( ( ( G e. Mnd /\ H e. Mnd ) /\ ( S C_ B /\ .0. e. S ) ) -> G e. Mnd ) |
19 |
3 1
|
ressbasss |
|- ( Base ` H ) C_ B |
20 |
19
|
sseli |
|- ( x e. ( Base ` H ) -> x e. B ) |
21 |
1 14 2
|
mndlid |
|- ( ( G e. Mnd /\ x e. B ) -> ( .0. ( +g ` G ) x ) = x ) |
22 |
18 20 21
|
syl2an |
|- ( ( ( ( G e. Mnd /\ H e. Mnd ) /\ ( S C_ B /\ .0. e. S ) ) /\ x e. ( Base ` H ) ) -> ( .0. ( +g ` G ) x ) = x ) |
23 |
17 22
|
eqtr3d |
|- ( ( ( ( G e. Mnd /\ H e. Mnd ) /\ ( S C_ B /\ .0. e. S ) ) /\ x e. ( Base ` H ) ) -> ( .0. ( +g ` H ) x ) = x ) |
24 |
16
|
oveqd |
|- ( ( ( ( G e. Mnd /\ H e. Mnd ) /\ ( S C_ B /\ .0. e. S ) ) /\ x e. ( Base ` H ) ) -> ( x ( +g ` G ) .0. ) = ( x ( +g ` H ) .0. ) ) |
25 |
1 14 2
|
mndrid |
|- ( ( G e. Mnd /\ x e. B ) -> ( x ( +g ` G ) .0. ) = x ) |
26 |
18 20 25
|
syl2an |
|- ( ( ( ( G e. Mnd /\ H e. Mnd ) /\ ( S C_ B /\ .0. e. S ) ) /\ x e. ( Base ` H ) ) -> ( x ( +g ` G ) .0. ) = x ) |
27 |
24 26
|
eqtr3d |
|- ( ( ( ( G e. Mnd /\ H e. Mnd ) /\ ( S C_ B /\ .0. e. S ) ) /\ x e. ( Base ` H ) ) -> ( x ( +g ` H ) .0. ) = x ) |
28 |
4 5 6 10 23 27
|
ismgmid2 |
|- ( ( ( G e. Mnd /\ H e. Mnd ) /\ ( S C_ B /\ .0. e. S ) ) -> .0. = ( 0g ` H ) ) |