| Step | Hyp | Ref | Expression | 
						
							| 1 |  | submod.h |  |-  H = ( G |`s Y ) | 
						
							| 2 |  | submod.o |  |-  O = ( od ` G ) | 
						
							| 3 |  | submod.p |  |-  P = ( od ` H ) | 
						
							| 4 |  | simpll |  |-  ( ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) /\ x e. NN ) -> Y e. ( SubMnd ` G ) ) | 
						
							| 5 |  | nnnn0 |  |-  ( x e. NN -> x e. NN0 ) | 
						
							| 6 | 5 | adantl |  |-  ( ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) /\ x e. NN ) -> x e. NN0 ) | 
						
							| 7 |  | simplr |  |-  ( ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) /\ x e. NN ) -> A e. Y ) | 
						
							| 8 |  | eqid |  |-  ( .g ` G ) = ( .g ` G ) | 
						
							| 9 |  | eqid |  |-  ( .g ` H ) = ( .g ` H ) | 
						
							| 10 | 8 1 9 | submmulg |  |-  ( ( Y e. ( SubMnd ` G ) /\ x e. NN0 /\ A e. Y ) -> ( x ( .g ` G ) A ) = ( x ( .g ` H ) A ) ) | 
						
							| 11 | 4 6 7 10 | syl3anc |  |-  ( ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) /\ x e. NN ) -> ( x ( .g ` G ) A ) = ( x ( .g ` H ) A ) ) | 
						
							| 12 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 13 | 1 12 | subm0 |  |-  ( Y e. ( SubMnd ` G ) -> ( 0g ` G ) = ( 0g ` H ) ) | 
						
							| 14 | 13 | ad2antrr |  |-  ( ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) /\ x e. NN ) -> ( 0g ` G ) = ( 0g ` H ) ) | 
						
							| 15 | 11 14 | eqeq12d |  |-  ( ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) /\ x e. NN ) -> ( ( x ( .g ` G ) A ) = ( 0g ` G ) <-> ( x ( .g ` H ) A ) = ( 0g ` H ) ) ) | 
						
							| 16 | 15 | rabbidva |  |-  ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } ) | 
						
							| 17 |  | eqeq1 |  |-  ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } -> ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = (/) <-> { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } = (/) ) ) | 
						
							| 18 |  | infeq1 |  |-  ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } -> inf ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } , RR , < ) = inf ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } , RR , < ) ) | 
						
							| 19 | 17 18 | ifbieq2d |  |-  ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } -> if ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = (/) , 0 , inf ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } , RR , < ) ) = if ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } = (/) , 0 , inf ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } , RR , < ) ) ) | 
						
							| 20 | 16 19 | syl |  |-  ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> if ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = (/) , 0 , inf ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } , RR , < ) ) = if ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } = (/) , 0 , inf ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } , RR , < ) ) ) | 
						
							| 21 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 22 | 21 | submss |  |-  ( Y e. ( SubMnd ` G ) -> Y C_ ( Base ` G ) ) | 
						
							| 23 | 22 | sselda |  |-  ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> A e. ( Base ` G ) ) | 
						
							| 24 |  | eqid |  |-  { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } | 
						
							| 25 | 21 8 12 2 24 | odval |  |-  ( A e. ( Base ` G ) -> ( O ` A ) = if ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = (/) , 0 , inf ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } , RR , < ) ) ) | 
						
							| 26 | 23 25 | syl |  |-  ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> ( O ` A ) = if ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = (/) , 0 , inf ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } , RR , < ) ) ) | 
						
							| 27 |  | simpr |  |-  ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> A e. Y ) | 
						
							| 28 | 22 | adantr |  |-  ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> Y C_ ( Base ` G ) ) | 
						
							| 29 | 1 21 | ressbas2 |  |-  ( Y C_ ( Base ` G ) -> Y = ( Base ` H ) ) | 
						
							| 30 | 28 29 | syl |  |-  ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> Y = ( Base ` H ) ) | 
						
							| 31 | 27 30 | eleqtrd |  |-  ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> A e. ( Base ` H ) ) | 
						
							| 32 |  | eqid |  |-  ( Base ` H ) = ( Base ` H ) | 
						
							| 33 |  | eqid |  |-  ( 0g ` H ) = ( 0g ` H ) | 
						
							| 34 |  | eqid |  |-  { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } = { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } | 
						
							| 35 | 32 9 33 3 34 | odval |  |-  ( A e. ( Base ` H ) -> ( P ` A ) = if ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } = (/) , 0 , inf ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } , RR , < ) ) ) | 
						
							| 36 | 31 35 | syl |  |-  ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> ( P ` A ) = if ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } = (/) , 0 , inf ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } , RR , < ) ) ) | 
						
							| 37 | 20 26 36 | 3eqtr4d |  |-  ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> ( O ` A ) = ( P ` A ) ) |