Step |
Hyp |
Ref |
Expression |
1 |
|
submod.h |
|- H = ( G |`s Y ) |
2 |
|
submod.o |
|- O = ( od ` G ) |
3 |
|
submod.p |
|- P = ( od ` H ) |
4 |
|
simpll |
|- ( ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) /\ x e. NN ) -> Y e. ( SubMnd ` G ) ) |
5 |
|
nnnn0 |
|- ( x e. NN -> x e. NN0 ) |
6 |
5
|
adantl |
|- ( ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) /\ x e. NN ) -> x e. NN0 ) |
7 |
|
simplr |
|- ( ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) /\ x e. NN ) -> A e. Y ) |
8 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
9 |
|
eqid |
|- ( .g ` H ) = ( .g ` H ) |
10 |
8 1 9
|
submmulg |
|- ( ( Y e. ( SubMnd ` G ) /\ x e. NN0 /\ A e. Y ) -> ( x ( .g ` G ) A ) = ( x ( .g ` H ) A ) ) |
11 |
4 6 7 10
|
syl3anc |
|- ( ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) /\ x e. NN ) -> ( x ( .g ` G ) A ) = ( x ( .g ` H ) A ) ) |
12 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
13 |
1 12
|
subm0 |
|- ( Y e. ( SubMnd ` G ) -> ( 0g ` G ) = ( 0g ` H ) ) |
14 |
13
|
ad2antrr |
|- ( ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) /\ x e. NN ) -> ( 0g ` G ) = ( 0g ` H ) ) |
15 |
11 14
|
eqeq12d |
|- ( ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) /\ x e. NN ) -> ( ( x ( .g ` G ) A ) = ( 0g ` G ) <-> ( x ( .g ` H ) A ) = ( 0g ` H ) ) ) |
16 |
15
|
rabbidva |
|- ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } ) |
17 |
|
eqeq1 |
|- ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } -> ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = (/) <-> { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } = (/) ) ) |
18 |
|
infeq1 |
|- ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } -> inf ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } , RR , < ) = inf ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } , RR , < ) ) |
19 |
17 18
|
ifbieq2d |
|- ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } -> if ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = (/) , 0 , inf ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } , RR , < ) ) = if ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } = (/) , 0 , inf ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } , RR , < ) ) ) |
20 |
16 19
|
syl |
|- ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> if ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = (/) , 0 , inf ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } , RR , < ) ) = if ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } = (/) , 0 , inf ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } , RR , < ) ) ) |
21 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
22 |
21
|
submss |
|- ( Y e. ( SubMnd ` G ) -> Y C_ ( Base ` G ) ) |
23 |
22
|
sselda |
|- ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> A e. ( Base ` G ) ) |
24 |
|
eqid |
|- { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } |
25 |
21 8 12 2 24
|
odval |
|- ( A e. ( Base ` G ) -> ( O ` A ) = if ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = (/) , 0 , inf ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } , RR , < ) ) ) |
26 |
23 25
|
syl |
|- ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> ( O ` A ) = if ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } = (/) , 0 , inf ( { x e. NN | ( x ( .g ` G ) A ) = ( 0g ` G ) } , RR , < ) ) ) |
27 |
|
simpr |
|- ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> A e. Y ) |
28 |
22
|
adantr |
|- ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> Y C_ ( Base ` G ) ) |
29 |
1 21
|
ressbas2 |
|- ( Y C_ ( Base ` G ) -> Y = ( Base ` H ) ) |
30 |
28 29
|
syl |
|- ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> Y = ( Base ` H ) ) |
31 |
27 30
|
eleqtrd |
|- ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> A e. ( Base ` H ) ) |
32 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
33 |
|
eqid |
|- ( 0g ` H ) = ( 0g ` H ) |
34 |
|
eqid |
|- { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } = { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } |
35 |
32 9 33 3 34
|
odval |
|- ( A e. ( Base ` H ) -> ( P ` A ) = if ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } = (/) , 0 , inf ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } , RR , < ) ) ) |
36 |
31 35
|
syl |
|- ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> ( P ` A ) = if ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } = (/) , 0 , inf ( { x e. NN | ( x ( .g ` H ) A ) = ( 0g ` H ) } , RR , < ) ) ) |
37 |
20 26 36
|
3eqtr4d |
|- ( ( Y e. ( SubMnd ` G ) /\ A e. Y ) -> ( O ` A ) = ( P ` A ) ) |