Step |
Hyp |
Ref |
Expression |
1 |
|
submrc.f |
|- F = ( mrCls ` C ) |
2 |
|
submrc.g |
|- G = ( mrCls ` ( C i^i ~P D ) ) |
3 |
|
submre |
|- ( ( C e. ( Moore ` X ) /\ D e. C ) -> ( C i^i ~P D ) e. ( Moore ` D ) ) |
4 |
3
|
3adant3 |
|- ( ( C e. ( Moore ` X ) /\ D e. C /\ U C_ D ) -> ( C i^i ~P D ) e. ( Moore ` D ) ) |
5 |
|
simp1 |
|- ( ( C e. ( Moore ` X ) /\ D e. C /\ U C_ D ) -> C e. ( Moore ` X ) ) |
6 |
|
simp3 |
|- ( ( C e. ( Moore ` X ) /\ D e. C /\ U C_ D ) -> U C_ D ) |
7 |
|
mress |
|- ( ( C e. ( Moore ` X ) /\ D e. C ) -> D C_ X ) |
8 |
7
|
3adant3 |
|- ( ( C e. ( Moore ` X ) /\ D e. C /\ U C_ D ) -> D C_ X ) |
9 |
6 8
|
sstrd |
|- ( ( C e. ( Moore ` X ) /\ D e. C /\ U C_ D ) -> U C_ X ) |
10 |
5 1 9
|
mrcssidd |
|- ( ( C e. ( Moore ` X ) /\ D e. C /\ U C_ D ) -> U C_ ( F ` U ) ) |
11 |
1
|
mrccl |
|- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> ( F ` U ) e. C ) |
12 |
5 9 11
|
syl2anc |
|- ( ( C e. ( Moore ` X ) /\ D e. C /\ U C_ D ) -> ( F ` U ) e. C ) |
13 |
1
|
mrcsscl |
|- ( ( C e. ( Moore ` X ) /\ U C_ D /\ D e. C ) -> ( F ` U ) C_ D ) |
14 |
13
|
3com23 |
|- ( ( C e. ( Moore ` X ) /\ D e. C /\ U C_ D ) -> ( F ` U ) C_ D ) |
15 |
|
fvex |
|- ( F ` U ) e. _V |
16 |
15
|
elpw |
|- ( ( F ` U ) e. ~P D <-> ( F ` U ) C_ D ) |
17 |
14 16
|
sylibr |
|- ( ( C e. ( Moore ` X ) /\ D e. C /\ U C_ D ) -> ( F ` U ) e. ~P D ) |
18 |
12 17
|
elind |
|- ( ( C e. ( Moore ` X ) /\ D e. C /\ U C_ D ) -> ( F ` U ) e. ( C i^i ~P D ) ) |
19 |
2
|
mrcsscl |
|- ( ( ( C i^i ~P D ) e. ( Moore ` D ) /\ U C_ ( F ` U ) /\ ( F ` U ) e. ( C i^i ~P D ) ) -> ( G ` U ) C_ ( F ` U ) ) |
20 |
4 10 18 19
|
syl3anc |
|- ( ( C e. ( Moore ` X ) /\ D e. C /\ U C_ D ) -> ( G ` U ) C_ ( F ` U ) ) |
21 |
4 2 6
|
mrcssidd |
|- ( ( C e. ( Moore ` X ) /\ D e. C /\ U C_ D ) -> U C_ ( G ` U ) ) |
22 |
2
|
mrccl |
|- ( ( ( C i^i ~P D ) e. ( Moore ` D ) /\ U C_ D ) -> ( G ` U ) e. ( C i^i ~P D ) ) |
23 |
4 6 22
|
syl2anc |
|- ( ( C e. ( Moore ` X ) /\ D e. C /\ U C_ D ) -> ( G ` U ) e. ( C i^i ~P D ) ) |
24 |
23
|
elin1d |
|- ( ( C e. ( Moore ` X ) /\ D e. C /\ U C_ D ) -> ( G ` U ) e. C ) |
25 |
1
|
mrcsscl |
|- ( ( C e. ( Moore ` X ) /\ U C_ ( G ` U ) /\ ( G ` U ) e. C ) -> ( F ` U ) C_ ( G ` U ) ) |
26 |
5 21 24 25
|
syl3anc |
|- ( ( C e. ( Moore ` X ) /\ D e. C /\ U C_ D ) -> ( F ` U ) C_ ( G ` U ) ) |
27 |
20 26
|
eqssd |
|- ( ( C e. ( Moore ` X ) /\ D e. C /\ U C_ D ) -> ( G ` U ) = ( F ` U ) ) |