| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inss2 |
|- ( C i^i ~P A ) C_ ~P A |
| 2 |
1
|
a1i |
|- ( ( C e. ( Moore ` X ) /\ A e. C ) -> ( C i^i ~P A ) C_ ~P A ) |
| 3 |
|
simpr |
|- ( ( C e. ( Moore ` X ) /\ A e. C ) -> A e. C ) |
| 4 |
|
pwidg |
|- ( A e. C -> A e. ~P A ) |
| 5 |
4
|
adantl |
|- ( ( C e. ( Moore ` X ) /\ A e. C ) -> A e. ~P A ) |
| 6 |
3 5
|
elind |
|- ( ( C e. ( Moore ` X ) /\ A e. C ) -> A e. ( C i^i ~P A ) ) |
| 7 |
|
simp1l |
|- ( ( ( C e. ( Moore ` X ) /\ A e. C ) /\ x C_ ( C i^i ~P A ) /\ x =/= (/) ) -> C e. ( Moore ` X ) ) |
| 8 |
|
inss1 |
|- ( C i^i ~P A ) C_ C |
| 9 |
|
sstr |
|- ( ( x C_ ( C i^i ~P A ) /\ ( C i^i ~P A ) C_ C ) -> x C_ C ) |
| 10 |
8 9
|
mpan2 |
|- ( x C_ ( C i^i ~P A ) -> x C_ C ) |
| 11 |
10
|
3ad2ant2 |
|- ( ( ( C e. ( Moore ` X ) /\ A e. C ) /\ x C_ ( C i^i ~P A ) /\ x =/= (/) ) -> x C_ C ) |
| 12 |
|
simp3 |
|- ( ( ( C e. ( Moore ` X ) /\ A e. C ) /\ x C_ ( C i^i ~P A ) /\ x =/= (/) ) -> x =/= (/) ) |
| 13 |
|
mreintcl |
|- ( ( C e. ( Moore ` X ) /\ x C_ C /\ x =/= (/) ) -> |^| x e. C ) |
| 14 |
7 11 12 13
|
syl3anc |
|- ( ( ( C e. ( Moore ` X ) /\ A e. C ) /\ x C_ ( C i^i ~P A ) /\ x =/= (/) ) -> |^| x e. C ) |
| 15 |
|
sstr |
|- ( ( x C_ ( C i^i ~P A ) /\ ( C i^i ~P A ) C_ ~P A ) -> x C_ ~P A ) |
| 16 |
1 15
|
mpan2 |
|- ( x C_ ( C i^i ~P A ) -> x C_ ~P A ) |
| 17 |
16
|
3ad2ant2 |
|- ( ( ( C e. ( Moore ` X ) /\ A e. C ) /\ x C_ ( C i^i ~P A ) /\ x =/= (/) ) -> x C_ ~P A ) |
| 18 |
|
intssuni2 |
|- ( ( x C_ ~P A /\ x =/= (/) ) -> |^| x C_ U. ~P A ) |
| 19 |
17 12 18
|
syl2anc |
|- ( ( ( C e. ( Moore ` X ) /\ A e. C ) /\ x C_ ( C i^i ~P A ) /\ x =/= (/) ) -> |^| x C_ U. ~P A ) |
| 20 |
|
unipw |
|- U. ~P A = A |
| 21 |
19 20
|
sseqtrdi |
|- ( ( ( C e. ( Moore ` X ) /\ A e. C ) /\ x C_ ( C i^i ~P A ) /\ x =/= (/) ) -> |^| x C_ A ) |
| 22 |
|
elpw2g |
|- ( A e. C -> ( |^| x e. ~P A <-> |^| x C_ A ) ) |
| 23 |
22
|
adantl |
|- ( ( C e. ( Moore ` X ) /\ A e. C ) -> ( |^| x e. ~P A <-> |^| x C_ A ) ) |
| 24 |
23
|
3ad2ant1 |
|- ( ( ( C e. ( Moore ` X ) /\ A e. C ) /\ x C_ ( C i^i ~P A ) /\ x =/= (/) ) -> ( |^| x e. ~P A <-> |^| x C_ A ) ) |
| 25 |
21 24
|
mpbird |
|- ( ( ( C e. ( Moore ` X ) /\ A e. C ) /\ x C_ ( C i^i ~P A ) /\ x =/= (/) ) -> |^| x e. ~P A ) |
| 26 |
14 25
|
elind |
|- ( ( ( C e. ( Moore ` X ) /\ A e. C ) /\ x C_ ( C i^i ~P A ) /\ x =/= (/) ) -> |^| x e. ( C i^i ~P A ) ) |
| 27 |
2 6 26
|
ismred |
|- ( ( C e. ( Moore ` X ) /\ A e. C ) -> ( C i^i ~P A ) e. ( Moore ` A ) ) |