Step |
Hyp |
Ref |
Expression |
1 |
|
inss2 |
|- ( C i^i ~P A ) C_ ~P A |
2 |
1
|
a1i |
|- ( ( C e. ( Moore ` X ) /\ A e. C ) -> ( C i^i ~P A ) C_ ~P A ) |
3 |
|
simpr |
|- ( ( C e. ( Moore ` X ) /\ A e. C ) -> A e. C ) |
4 |
|
pwidg |
|- ( A e. C -> A e. ~P A ) |
5 |
4
|
adantl |
|- ( ( C e. ( Moore ` X ) /\ A e. C ) -> A e. ~P A ) |
6 |
3 5
|
elind |
|- ( ( C e. ( Moore ` X ) /\ A e. C ) -> A e. ( C i^i ~P A ) ) |
7 |
|
simp1l |
|- ( ( ( C e. ( Moore ` X ) /\ A e. C ) /\ x C_ ( C i^i ~P A ) /\ x =/= (/) ) -> C e. ( Moore ` X ) ) |
8 |
|
inss1 |
|- ( C i^i ~P A ) C_ C |
9 |
|
sstr |
|- ( ( x C_ ( C i^i ~P A ) /\ ( C i^i ~P A ) C_ C ) -> x C_ C ) |
10 |
8 9
|
mpan2 |
|- ( x C_ ( C i^i ~P A ) -> x C_ C ) |
11 |
10
|
3ad2ant2 |
|- ( ( ( C e. ( Moore ` X ) /\ A e. C ) /\ x C_ ( C i^i ~P A ) /\ x =/= (/) ) -> x C_ C ) |
12 |
|
simp3 |
|- ( ( ( C e. ( Moore ` X ) /\ A e. C ) /\ x C_ ( C i^i ~P A ) /\ x =/= (/) ) -> x =/= (/) ) |
13 |
|
mreintcl |
|- ( ( C e. ( Moore ` X ) /\ x C_ C /\ x =/= (/) ) -> |^| x e. C ) |
14 |
7 11 12 13
|
syl3anc |
|- ( ( ( C e. ( Moore ` X ) /\ A e. C ) /\ x C_ ( C i^i ~P A ) /\ x =/= (/) ) -> |^| x e. C ) |
15 |
|
sstr |
|- ( ( x C_ ( C i^i ~P A ) /\ ( C i^i ~P A ) C_ ~P A ) -> x C_ ~P A ) |
16 |
1 15
|
mpan2 |
|- ( x C_ ( C i^i ~P A ) -> x C_ ~P A ) |
17 |
16
|
3ad2ant2 |
|- ( ( ( C e. ( Moore ` X ) /\ A e. C ) /\ x C_ ( C i^i ~P A ) /\ x =/= (/) ) -> x C_ ~P A ) |
18 |
|
intssuni2 |
|- ( ( x C_ ~P A /\ x =/= (/) ) -> |^| x C_ U. ~P A ) |
19 |
17 12 18
|
syl2anc |
|- ( ( ( C e. ( Moore ` X ) /\ A e. C ) /\ x C_ ( C i^i ~P A ) /\ x =/= (/) ) -> |^| x C_ U. ~P A ) |
20 |
|
unipw |
|- U. ~P A = A |
21 |
19 20
|
sseqtrdi |
|- ( ( ( C e. ( Moore ` X ) /\ A e. C ) /\ x C_ ( C i^i ~P A ) /\ x =/= (/) ) -> |^| x C_ A ) |
22 |
|
elpw2g |
|- ( A e. C -> ( |^| x e. ~P A <-> |^| x C_ A ) ) |
23 |
22
|
adantl |
|- ( ( C e. ( Moore ` X ) /\ A e. C ) -> ( |^| x e. ~P A <-> |^| x C_ A ) ) |
24 |
23
|
3ad2ant1 |
|- ( ( ( C e. ( Moore ` X ) /\ A e. C ) /\ x C_ ( C i^i ~P A ) /\ x =/= (/) ) -> ( |^| x e. ~P A <-> |^| x C_ A ) ) |
25 |
21 24
|
mpbird |
|- ( ( ( C e. ( Moore ` X ) /\ A e. C ) /\ x C_ ( C i^i ~P A ) /\ x =/= (/) ) -> |^| x e. ~P A ) |
26 |
14 25
|
elind |
|- ( ( ( C e. ( Moore ` X ) /\ A e. C ) /\ x C_ ( C i^i ~P A ) /\ x =/= (/) ) -> |^| x e. ( C i^i ~P A ) ) |
27 |
2 6 26
|
ismred |
|- ( ( C e. ( Moore ` X ) /\ A e. C ) -> ( C i^i ~P A ) e. ( Moore ` A ) ) |