| Step |
Hyp |
Ref |
Expression |
| 1 |
|
submuladdmuld.a |
|- ( ph -> A e. CC ) |
| 2 |
|
submuladdmuld.b |
|- ( ph -> B e. CC ) |
| 3 |
|
submuladdmuld.c |
|- ( ph -> C e. CC ) |
| 4 |
|
submuladdmuld.d |
|- ( ph -> D e. CC ) |
| 5 |
1 2 3
|
subdird |
|- ( ph -> ( ( A - B ) x. C ) = ( ( A x. C ) - ( B x. C ) ) ) |
| 6 |
5
|
oveq1d |
|- ( ph -> ( ( ( A - B ) x. C ) + ( B x. D ) ) = ( ( ( A x. C ) - ( B x. C ) ) + ( B x. D ) ) ) |
| 7 |
1 3
|
mulcld |
|- ( ph -> ( A x. C ) e. CC ) |
| 8 |
2 3
|
mulcld |
|- ( ph -> ( B x. C ) e. CC ) |
| 9 |
2 4
|
mulcld |
|- ( ph -> ( B x. D ) e. CC ) |
| 10 |
7 8 9
|
subadd23d |
|- ( ph -> ( ( ( A x. C ) - ( B x. C ) ) + ( B x. D ) ) = ( ( A x. C ) + ( ( B x. D ) - ( B x. C ) ) ) ) |
| 11 |
2 4 3
|
subdid |
|- ( ph -> ( B x. ( D - C ) ) = ( ( B x. D ) - ( B x. C ) ) ) |
| 12 |
11
|
eqcomd |
|- ( ph -> ( ( B x. D ) - ( B x. C ) ) = ( B x. ( D - C ) ) ) |
| 13 |
12
|
oveq2d |
|- ( ph -> ( ( A x. C ) + ( ( B x. D ) - ( B x. C ) ) ) = ( ( A x. C ) + ( B x. ( D - C ) ) ) ) |
| 14 |
6 10 13
|
3eqtrd |
|- ( ph -> ( ( ( A - B ) x. C ) + ( B x. D ) ) = ( ( A x. C ) + ( B x. ( D - C ) ) ) ) |