Description: If the difference of two complex numbers is nonzero, they are unequal. Converse of subne0d . Contrapositive of subeq0bd . (Contributed by David Moews, 28-Feb-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | negidd.1 | |- ( ph -> A e. CC ) |
|
pncand.2 | |- ( ph -> B e. CC ) |
||
subne0ad.3 | |- ( ph -> ( A - B ) =/= 0 ) |
||
Assertion | subne0ad | |- ( ph -> A =/= B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | |- ( ph -> A e. CC ) |
|
2 | pncand.2 | |- ( ph -> B e. CC ) |
|
3 | subne0ad.3 | |- ( ph -> ( A - B ) =/= 0 ) |
|
4 | 1 2 | subeq0ad | |- ( ph -> ( ( A - B ) = 0 <-> A = B ) ) |
5 | 4 | necon3bid | |- ( ph -> ( ( A - B ) =/= 0 <-> A =/= B ) ) |
6 | 3 5 | mpbid | |- ( ph -> A =/= B ) |