Description: Two unequal numbers have nonzero difference. (Contributed by Mario Carneiro, 1-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | negidd.1 | |- ( ph -> A e. CC ) |
|
| pncand.2 | |- ( ph -> B e. CC ) |
||
| subne0d.3 | |- ( ph -> A =/= B ) |
||
| Assertion | subne0d | |- ( ph -> ( A - B ) =/= 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | |- ( ph -> A e. CC ) |
|
| 2 | pncand.2 | |- ( ph -> B e. CC ) |
|
| 3 | subne0d.3 | |- ( ph -> A =/= B ) |
|
| 4 | subeq0 | |- ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) = 0 <-> A = B ) ) |
|
| 5 | 1 2 4 | syl2anc | |- ( ph -> ( ( A - B ) = 0 <-> A = B ) ) |
| 6 | 5 | necon3bid | |- ( ph -> ( ( A - B ) =/= 0 <-> A =/= B ) ) |
| 7 | 3 6 | mpbird | |- ( ph -> ( A - B ) =/= 0 ) |