Description: Relationship between subtraction and negative. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | negidd.1 | |- ( ph -> A e. CC ) |
|
| pncand.2 | |- ( ph -> B e. CC ) |
||
| Assertion | subnegd | |- ( ph -> ( A - -u B ) = ( A + B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | |- ( ph -> A e. CC ) |
|
| 2 | pncand.2 | |- ( ph -> B e. CC ) |
|
| 3 | subneg | |- ( ( A e. CC /\ B e. CC ) -> ( A - -u B ) = ( A + B ) ) |
|
| 4 | 1 2 3 | syl2anc | |- ( ph -> ( A - -u B ) = ( A + B ) ) |