Metamath Proof Explorer


Theorem subneintr2d

Description: Introducing subtraction on both sides of a statement of inequality. Contrapositive of subcan2d . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses negidd.1
|- ( ph -> A e. CC )
pncand.2
|- ( ph -> B e. CC )
subaddd.3
|- ( ph -> C e. CC )
subneintr2d.4
|- ( ph -> A =/= B )
Assertion subneintr2d
|- ( ph -> ( A - C ) =/= ( B - C ) )

Proof

Step Hyp Ref Expression
1 negidd.1
 |-  ( ph -> A e. CC )
2 pncand.2
 |-  ( ph -> B e. CC )
3 subaddd.3
 |-  ( ph -> C e. CC )
4 subneintr2d.4
 |-  ( ph -> A =/= B )
5 1 2 3 subcan2ad
 |-  ( ph -> ( ( A - C ) = ( B - C ) <-> A = B ) )
6 5 necon3bid
 |-  ( ph -> ( ( A - C ) =/= ( B - C ) <-> A =/= B ) )
7 4 6 mpbird
 |-  ( ph -> ( A - C ) =/= ( B - C ) )