Description: Introducing subtraction on both sides of a statement of inequality. Contrapositive of subcand . (Contributed by David Moews, 28-Feb-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | negidd.1 | |- ( ph -> A e. CC ) |
|
pncand.2 | |- ( ph -> B e. CC ) |
||
subaddd.3 | |- ( ph -> C e. CC ) |
||
subneintrd.4 | |- ( ph -> B =/= C ) |
||
Assertion | subneintrd | |- ( ph -> ( A - B ) =/= ( A - C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | |- ( ph -> A e. CC ) |
|
2 | pncand.2 | |- ( ph -> B e. CC ) |
|
3 | subaddd.3 | |- ( ph -> C e. CC ) |
|
4 | subneintrd.4 | |- ( ph -> B =/= C ) |
|
5 | 1 2 3 | subcanad | |- ( ph -> ( ( A - B ) = ( A - C ) <-> B = C ) ) |
6 | 5 | necon3bid | |- ( ph -> ( ( A - B ) =/= ( A - C ) <-> B =/= C ) ) |
7 | 4 6 | mpbird | |- ( ph -> ( A - B ) =/= ( A - C ) ) |