Metamath Proof Explorer


Theorem subneintrd

Description: Introducing subtraction on both sides of a statement of inequality. Contrapositive of subcand . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses negidd.1
|- ( ph -> A e. CC )
pncand.2
|- ( ph -> B e. CC )
subaddd.3
|- ( ph -> C e. CC )
subneintrd.4
|- ( ph -> B =/= C )
Assertion subneintrd
|- ( ph -> ( A - B ) =/= ( A - C ) )

Proof

Step Hyp Ref Expression
1 negidd.1
 |-  ( ph -> A e. CC )
2 pncand.2
 |-  ( ph -> B e. CC )
3 subaddd.3
 |-  ( ph -> C e. CC )
4 subneintrd.4
 |-  ( ph -> B =/= C )
5 1 2 3 subcanad
 |-  ( ph -> ( ( A - B ) = ( A - C ) <-> B = C ) )
6 5 necon3bid
 |-  ( ph -> ( ( A - B ) =/= ( A - C ) <-> B =/= C ) )
7 4 6 mpbird
 |-  ( ph -> ( A - B ) =/= ( A - C ) )