Description: Introducing subtraction on both sides of a statement of inequality. Contrapositive of subcand . (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | negidd.1 | |- ( ph -> A e. CC ) |
|
| pncand.2 | |- ( ph -> B e. CC ) |
||
| subaddd.3 | |- ( ph -> C e. CC ) |
||
| subneintrd.4 | |- ( ph -> B =/= C ) |
||
| Assertion | subneintrd | |- ( ph -> ( A - B ) =/= ( A - C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | |- ( ph -> A e. CC ) |
|
| 2 | pncand.2 | |- ( ph -> B e. CC ) |
|
| 3 | subaddd.3 | |- ( ph -> C e. CC ) |
|
| 4 | subneintrd.4 | |- ( ph -> B =/= C ) |
|
| 5 | 1 2 3 | subcanad | |- ( ph -> ( ( A - B ) = ( A - C ) <-> B = C ) ) |
| 6 | 5 | necon3bid | |- ( ph -> ( ( A - B ) =/= ( A - C ) <-> B =/= C ) ) |
| 7 | 4 6 | mpbird | |- ( ph -> ( A - B ) =/= ( A - C ) ) |