Step |
Hyp |
Ref |
Expression |
1 |
|
subopnmbl.1 |
|- J = ( ( topGen ` ran (,) ) |`t A ) |
2 |
1
|
eleq2i |
|- ( B e. J <-> B e. ( ( topGen ` ran (,) ) |`t A ) ) |
3 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
4 |
|
elrest |
|- ( ( ( topGen ` ran (,) ) e. Top /\ A e. dom vol ) -> ( B e. ( ( topGen ` ran (,) ) |`t A ) <-> E. x e. ( topGen ` ran (,) ) B = ( x i^i A ) ) ) |
5 |
3 4
|
mpan |
|- ( A e. dom vol -> ( B e. ( ( topGen ` ran (,) ) |`t A ) <-> E. x e. ( topGen ` ran (,) ) B = ( x i^i A ) ) ) |
6 |
2 5
|
syl5bb |
|- ( A e. dom vol -> ( B e. J <-> E. x e. ( topGen ` ran (,) ) B = ( x i^i A ) ) ) |
7 |
|
opnmbl |
|- ( x e. ( topGen ` ran (,) ) -> x e. dom vol ) |
8 |
|
id |
|- ( A e. dom vol -> A e. dom vol ) |
9 |
|
inmbl |
|- ( ( x e. dom vol /\ A e. dom vol ) -> ( x i^i A ) e. dom vol ) |
10 |
7 8 9
|
syl2anr |
|- ( ( A e. dom vol /\ x e. ( topGen ` ran (,) ) ) -> ( x i^i A ) e. dom vol ) |
11 |
|
eleq1a |
|- ( ( x i^i A ) e. dom vol -> ( B = ( x i^i A ) -> B e. dom vol ) ) |
12 |
10 11
|
syl |
|- ( ( A e. dom vol /\ x e. ( topGen ` ran (,) ) ) -> ( B = ( x i^i A ) -> B e. dom vol ) ) |
13 |
12
|
rexlimdva |
|- ( A e. dom vol -> ( E. x e. ( topGen ` ran (,) ) B = ( x i^i A ) -> B e. dom vol ) ) |
14 |
6 13
|
sylbid |
|- ( A e. dom vol -> ( B e. J -> B e. dom vol ) ) |
15 |
14
|
imp |
|- ( ( A e. dom vol /\ B e. J ) -> B e. dom vol ) |