Step |
Hyp |
Ref |
Expression |
1 |
|
subrdom.1 |
|- ( ph -> R e. Domn ) |
2 |
|
subrdom.2 |
|- ( ph -> S e. ( SubRing ` R ) ) |
3 |
|
domnnzr |
|- ( R e. Domn -> R e. NzRing ) |
4 |
1 3
|
syl |
|- ( ph -> R e. NzRing ) |
5 |
|
eqid |
|- ( R |`s S ) = ( R |`s S ) |
6 |
5
|
subrgnzr |
|- ( ( R e. NzRing /\ S e. ( SubRing ` R ) ) -> ( R |`s S ) e. NzRing ) |
7 |
4 2 6
|
syl2anc |
|- ( ph -> ( R |`s S ) e. NzRing ) |
8 |
1
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> R e. Domn ) |
9 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
10 |
9
|
subrgss |
|- ( S e. ( SubRing ` R ) -> S C_ ( Base ` R ) ) |
11 |
2 10
|
syl |
|- ( ph -> S C_ ( Base ` R ) ) |
12 |
11
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> S C_ ( Base ` R ) ) |
13 |
|
simpllr |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> x e. ( Base ` ( R |`s S ) ) ) |
14 |
5 9
|
ressbas2 |
|- ( S C_ ( Base ` R ) -> S = ( Base ` ( R |`s S ) ) ) |
15 |
11 14
|
syl |
|- ( ph -> S = ( Base ` ( R |`s S ) ) ) |
16 |
15
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> S = ( Base ` ( R |`s S ) ) ) |
17 |
13 16
|
eleqtrrd |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> x e. S ) |
18 |
12 17
|
sseldd |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> x e. ( Base ` R ) ) |
19 |
|
simplr |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> y e. ( Base ` ( R |`s S ) ) ) |
20 |
19 16
|
eleqtrrd |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> y e. S ) |
21 |
12 20
|
sseldd |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> y e. ( Base ` R ) ) |
22 |
|
simpr |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) |
23 |
2
|
elexd |
|- ( ph -> S e. _V ) |
24 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
25 |
5 24
|
ressmulr |
|- ( S e. _V -> ( .r ` R ) = ( .r ` ( R |`s S ) ) ) |
26 |
23 25
|
syl |
|- ( ph -> ( .r ` R ) = ( .r ` ( R |`s S ) ) ) |
27 |
26
|
oveqd |
|- ( ph -> ( x ( .r ` R ) y ) = ( x ( .r ` ( R |`s S ) ) y ) ) |
28 |
27
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> ( x ( .r ` R ) y ) = ( x ( .r ` ( R |`s S ) ) y ) ) |
29 |
|
subrgrcl |
|- ( S e. ( SubRing ` R ) -> R e. Ring ) |
30 |
|
ringmnd |
|- ( R e. Ring -> R e. Mnd ) |
31 |
2 29 30
|
3syl |
|- ( ph -> R e. Mnd ) |
32 |
|
subrgsubg |
|- ( S e. ( SubRing ` R ) -> S e. ( SubGrp ` R ) ) |
33 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
34 |
33
|
subg0cl |
|- ( S e. ( SubGrp ` R ) -> ( 0g ` R ) e. S ) |
35 |
2 32 34
|
3syl |
|- ( ph -> ( 0g ` R ) e. S ) |
36 |
5 9 33
|
ress0g |
|- ( ( R e. Mnd /\ ( 0g ` R ) e. S /\ S C_ ( Base ` R ) ) -> ( 0g ` R ) = ( 0g ` ( R |`s S ) ) ) |
37 |
31 35 11 36
|
syl3anc |
|- ( ph -> ( 0g ` R ) = ( 0g ` ( R |`s S ) ) ) |
38 |
37
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> ( 0g ` R ) = ( 0g ` ( R |`s S ) ) ) |
39 |
22 28 38
|
3eqtr4d |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> ( x ( .r ` R ) y ) = ( 0g ` R ) ) |
40 |
9 24 33
|
domneq0 |
|- ( ( R e. Domn /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( ( x ( .r ` R ) y ) = ( 0g ` R ) <-> ( x = ( 0g ` R ) \/ y = ( 0g ` R ) ) ) ) |
41 |
40
|
biimpa |
|- ( ( ( R e. Domn /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x ( .r ` R ) y ) = ( 0g ` R ) ) -> ( x = ( 0g ` R ) \/ y = ( 0g ` R ) ) ) |
42 |
8 18 21 39 41
|
syl31anc |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> ( x = ( 0g ` R ) \/ y = ( 0g ` R ) ) ) |
43 |
38
|
eqeq2d |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> ( x = ( 0g ` R ) <-> x = ( 0g ` ( R |`s S ) ) ) ) |
44 |
38
|
eqeq2d |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> ( y = ( 0g ` R ) <-> y = ( 0g ` ( R |`s S ) ) ) ) |
45 |
43 44
|
orbi12d |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> ( ( x = ( 0g ` R ) \/ y = ( 0g ` R ) ) <-> ( x = ( 0g ` ( R |`s S ) ) \/ y = ( 0g ` ( R |`s S ) ) ) ) ) |
46 |
42 45
|
mpbid |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> ( x = ( 0g ` ( R |`s S ) ) \/ y = ( 0g ` ( R |`s S ) ) ) ) |
47 |
46
|
ex |
|- ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) -> ( ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) -> ( x = ( 0g ` ( R |`s S ) ) \/ y = ( 0g ` ( R |`s S ) ) ) ) ) |
48 |
47
|
anasss |
|- ( ( ph /\ ( x e. ( Base ` ( R |`s S ) ) /\ y e. ( Base ` ( R |`s S ) ) ) ) -> ( ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) -> ( x = ( 0g ` ( R |`s S ) ) \/ y = ( 0g ` ( R |`s S ) ) ) ) ) |
49 |
48
|
ralrimivva |
|- ( ph -> A. x e. ( Base ` ( R |`s S ) ) A. y e. ( Base ` ( R |`s S ) ) ( ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) -> ( x = ( 0g ` ( R |`s S ) ) \/ y = ( 0g ` ( R |`s S ) ) ) ) ) |
50 |
|
eqid |
|- ( Base ` ( R |`s S ) ) = ( Base ` ( R |`s S ) ) |
51 |
|
eqid |
|- ( .r ` ( R |`s S ) ) = ( .r ` ( R |`s S ) ) |
52 |
|
eqid |
|- ( 0g ` ( R |`s S ) ) = ( 0g ` ( R |`s S ) ) |
53 |
50 51 52
|
isdomn |
|- ( ( R |`s S ) e. Domn <-> ( ( R |`s S ) e. NzRing /\ A. x e. ( Base ` ( R |`s S ) ) A. y e. ( Base ` ( R |`s S ) ) ( ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) -> ( x = ( 0g ` ( R |`s S ) ) \/ y = ( 0g ` ( R |`s S ) ) ) ) ) ) |
54 |
7 49 53
|
sylanbrc |
|- ( ph -> ( R |`s S ) e. Domn ) |