Step |
Hyp |
Ref |
Expression |
1 |
|
1cnd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> 1 e. CC ) |
2 |
|
simpll |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> A e. CC ) |
3 |
|
simprl |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> B e. CC ) |
4 |
|
simplr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> A =/= 0 ) |
5 |
|
simprr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> B =/= 0 ) |
6 |
1 2 1 3 4 5
|
divsubdivd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( 1 / A ) - ( 1 / B ) ) = ( ( ( 1 x. B ) - ( 1 x. A ) ) / ( A x. B ) ) ) |
7 |
3
|
mulid2d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( 1 x. B ) = B ) |
8 |
2
|
mulid2d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( 1 x. A ) = A ) |
9 |
7 8
|
oveq12d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( 1 x. B ) - ( 1 x. A ) ) = ( B - A ) ) |
10 |
9
|
oveq1d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( ( 1 x. B ) - ( 1 x. A ) ) / ( A x. B ) ) = ( ( B - A ) / ( A x. B ) ) ) |
11 |
6 10
|
eqtrd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( 1 / A ) - ( 1 / B ) ) = ( ( B - A ) / ( A x. B ) ) ) |